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Abstract

The fundamental limitation of B-spline surfaces in hull
form modeling is its restriction to quadrilateral surfaces.
Aside of the necessity to compose hull forms of several
patches, this results in an undesirable high number of
control points and inefficient fairing. As a consequence,
hull form modeling is a laborious task.

In contrast, subdivision is a method to define B-spline
surfaces on control meshes of arbitrary topology. This al-
lows to represent surfaces of any complexity with a single
B-spline surface. Only a few control points are required
and fairing is significantly simplified. In that, subdivision
addresses exactly the fundamental limitation of B-spline
surfaces in hull form modeling. This article briefly re-
views the basics of a subdivision-based construction of B-
spline surfaces, describes an algorithm to generate bicu-
bic B-spline surfaces of any complexity, and shows its ap-
plication in hull form modeling.
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Introduction

Probably the most important information about a ship de-
sign is the hull form. To model a high-quality hull form
is a major task of the ship design process. The quality of
a hull form is measured in terms of fairness. This quality
criterion requires curvature continuity as well as a mini-
mal number of inflection points. Naturally, it is the de-
signer’s responsibility to minimize the number of inflec-
tion points. In contrast, curvature continuity is a property
of the geometric representation of the hull form. Hence,
the demand on quality that arises in the context of hull
form modeling affects the geometric representation of the
hull form.

In general, only a surface-based representation enables
an unambiguous characterization of a hull form. Usu-
ally, tensor-product splines surfaces are employed for hull
form representation. In most cases bicubic B-spline sur-
faces are used. Indeed, a cubic B-spline offers the best

trade-off between a minimal degree and curvature conti-
nuity as required for a fair surface. Due to the topolog-
ical limitation of tensor-product splines to quadrilateral
surfaces, complex surfaces, such as typical hull forms,
cannot be represented with a single tensor-product spline.
However, hull surfaces are composed of several tensor-
product spline patches, but this causes several implica-
tions on hull form modeling.

In general, discontinuities of different order are present
between neighboring patches. At the first glance, this
sounds rather mathematical. In fact, this implies a lack of
definition of the hull form that is of technical importance.
In this context, discontinuities of zeroth order between
neighboring patches are the worst case. In practice, they
cause the failure of analysis methods used for ship de-
sign and require substantial effort to handle. High-order
discontinuities primarily affect the quality of a hull form
representation in terms of fairness. Technically, the ad-
vantage of a good fairness of a hull surface is lower resis-
tance and therefore lower fuel consumption of the ship.
Due to discontinuous curvature or tangents the potential
fairness of a hull form representation based on tensor-
product splines is limited.

In order to keep discontinuities at least small, a large
number of control points is required. Each patch requires
a sufficient degree of freedom to be fitted in a continu-
ous way to its neighbors. Hence, the manual definition
of a hull surface is labor intensive, but even more so-
phisticated methods to construct hull forms, such as loft-
ing curve networks, suffer from the limitation of tensor-
product splines. As a consequence, hull form design is
still a laborious task.

The limitation of tensor-product splines to quadrilat-
eral surfaces causes the necessity to compose a hull form
of several patches. To negotiate this limitation, attention
has to be paid to its reason. The reason is that tensor-
product splines are defined on regular control meshes.
In order to address this limitation, a possibility to define
spline surfaces on arbitrary topological control meshes is
required. Naturally, this leads to the idea of subdivision
surfaces. A certain class of subdivision surfaces general-
izes tensor-product splines for control meshes of arbitrary
topology. Certainly, the most important example is the al-
gorithm of (Catmull and Clark, 1978), which generalizes
bicubic B-spline surfaces.



Related work

Tensor-product B-splines are commonly used for hull
form representation. However, the limitation of tensor-
product splines to quadrilateral surfaces is recently identi-
fied by (Sharma et al., 2012) as incompatible to the gener-
ally non-quadrilateral surface of a hull form. Aside of the
necessity to compose a hull form of several patches, this
results in an undesirable high number of control points
and inefficient fairing. To address the limitation of tensor-
product splines is classified as a key issue to improve hull
form modeling. This conclusion is justified by (Koel-
man and Veelo, 2013). In addition, a variety of possible
solutions is provided. They can be roughly categorized
into two groups: solutions that support the user in the
construction of a set of ordinary tensor-product patches
that join smoothly, and solutions that overcome the lim-
itations of tensor-product splines in using an alternative
surface construction. Though not identified as such, all
proposed solutions of the second group belong to a cer-
tain class of subdivision surfaces.

This class of subdivision surfaces contains subdivi-
sion algorithms to generate B-spline surfaces on control
meshes of arbitrary topology. From an analytical point of
view they are spline surfaces with singularities at extraor-
dinary points of the domain, but subdivision allows to re-
move those singularities. This is the appropriate setup to
evaluate analytical properties of the surface exactly and
therefore suitable to meet engineering demands. How-
ever, this setup requires the subdivision algorithm to be
stationary. Refer to the subsequent section for a brief de-
scription of this approach to subdivision surfaces, or to
the monograph of (Peters and Reif, 2008) for a compre-
hensive introduction in the uniform setting.

The most prominent examples are the subdivision al-
gorithm of (Doo and Sabin, 1978), which generalizes
biquadratic tensor-product splines, and the algorithm of
(Catmull and Clark, 1978), which generalizes bicubic
tensor-product splines. In addition, (Stam, 2001) and
(Zorin and Schröder, 2001) provide generalizations for
B-spline surfaces of arbitrary degree. All of these algo-
rithms are stationary, but restricted to uniform B-splines.

Non-uniform B-splines are addressed by (Sederberg
et al., 1998) for biquadratic and bicubic surfaces. How-
ever, the algorithms are non-stationary, but utilization of
certain constraints for the knot vector yields a stationary
algorithm, see (Sederberg et al., 2003). Furthermore, a
special type of control point, the T-point, gives additional
freedom to refine the control mesh locally. Another algo-
rithm that generalizes non-uniform bicubic B-spline sur-
faces is described by (Müller et al., 2006) and later im-
proved in (Müller et al., 2010). In vicinity of extraor-
dinary points uniform subdivision is used, whereas non-
uniform subdivision is restricted to regular parts of the
control mesh. In fact, both algorithms blend between uni-
form and non-uniform subdivision. The first algorithm is
non-stationary and the second algorithm is stationary. Fi-
nally, (Cashman et al., 2009) describes a stationary algo-
rithm for non-uniform B-spline surfaces of any odd de-
gree.

The most important application of non-uniform B-
splines is the boundary behavior of open surfaces. A con-
venient boundary behavior of B-spline surfaces utilizes
multiple knot lines on the domain boundaries. Further-
more, it is possible to define interior creases using mul-
tiple knot lines. However, none of the subdivision algo-
rithms for non-uniform B-splines permits multiple knot
lines at irregular knots. Hence, the application of non-
uniform modeling features is limited to regular configu-
rations.

Instead of using multiple knot lines, a local modifi-
cation of the subdivision algorithm allows to introduce
similar features to subdivision surfaces that are not con-
strained to certain topological configurations. A com-
mon modification for bicubic surfaces is given by (Hoppe
et al., 1994) and later improved by (Biermann et al.,
2000). An approach to integrate features in subdivision
surfaces of arbitrary degree is described by (Stewart and
Foisy, 2004).

Subdivision surfaces have gained wide popularity in
other fields, such as animation movies. In this field they
replaced tensor-product splines for the representation of
complex objects. However, in the maritime industry they
are still rarely used. An application of non-uniform sub-
division surfaces for hull form design is shown by (Seder-
berg and Sederberg, 2010). Multiple knot lines are used
to introduce features such as chines and knuckles to the
hull form. The presented examples are rather simple
and lack the complex transitions of the fore and aft body
found in typical hull forms of merchant vessels. Due to
the topological restriction of multiple knot lines to regu-
lar configurations, it would be interesting to see how such
complexities are handled compared to the approach pre-
sented in this article. In (Greshake and Bronsart, 2015) it
is shown that discontinuities between neighboring tensor-
product patches limit the quality of a hull form repre-
sentation. It is demonstrated that a hull form represen-
tation based on subdivision surfaces yields a significant
improvement of quality due to the fact that those discon-
tinuities are avoided. Finally, (Lee et al., 2004) proposes
a method to generate a subdivision surface based on a net-
work of ship lines. Indeed, they show that a subdivision-
based representation of hull forms is compatible to this
widely used method of hull form modeling. However,
they use an ordinary Catmull-Clark subdivision surface
and therefore they are not able to consider feature curves
in the lines network.

Surface representation

Often tensor-product B-spline surfaces are simply called
B-spline surfaces or, in order to refer to its most general
form, they are called NURBS surfaces. The term tensor-
product is usually omitted. However, in this context it is
essential to refer explicitly to tensor-product or subdivi-
sion surfaces. Both terms may involve B-spline surfaces,
but the difference that is emphasized is the mathematical
approach to construct them. To clarify this difference,
the subsequent material briefly reviews the fundamen-



tals of tensor-product B-splines and then introduces the
subdivision-based construction of B-spline surfaces. Pro-
viding this theoretical foundation to the community, the
authors seek to resolve common misconceptions about
subdivision surfaces and to legitimate them as suitable
successor for tensor-product B-splines in the field of hull
form modeling.

Tensor-product B-spline surfaces

A tensor-product B-spline surface is a continuous map

x : Σ→ R3 (1)

where, for convenience, Σ = [0, 1]2 is restricted to the
unit square, and

x(s, t) =

n∑
i=0

m∑
i=0

bpi (s)bqj(t)qij (2)

for all (s, t) ∈ Σ. The B-spline functions bpi and bqj
are piecewise polynomials of degree p and degree q re-
spectively, and qij forms a regular grid of control points.
To compute the B-spline functions a bit more informa-
tion is necessary: the knot vectors [s0, ..., sn+p+1] and
[t0, ..., tm+q+1] respectively.

At the first glance, the mathematical setup might look
excessive, but it is as simple as to take all pairs (s, t) from
the unit square [0, 1] and to map them to points in R3 us-
ing equation 2. The particular properties of the B-spline
functions ensure that the result will be a smooth surface.

Subdivision surfaces

The subsequent material introduces subdivision surfaces
as generalized B-spline surfaces. It is a brief description
of the essential concepts presented in the monograph of
(Peters and Reif, 2008).

A generalized spline surface is a continuous map

x : S→ R3 (3)

where S denotes the domain. The domain is composed
of a set of indexed cells Σ = [0, 1]2 that are glued to-
gether. The domain is topologically unrestricted, what
means that an arbitrary number of cells is allowed to meet
in a common point.

The restriction of the generalized spline surface x to a
certain cell of its domain

xi : Σ 3 (s, t) 7→ x(s, t, i) ∈ R3 (4)

is called a patch. Indeed, this is identical to compose
a complex surface of several patches. However, those
patches are now treated rigorously as a single surface.

The next step is to utilize the notion of a general-
ized spline in order to define B-spline surfaces on con-
trol meshes of arbitrary topology. Initially, the restriction
of the generalized spline surface to a certain patch is ex-
pressed in terms of equation 2. An example, which is

reasonable in the context of hull form representation, is a
bicubic tensor-product B-spline surface

xi(s, t) =

3∑
i=0

3∑
i=0

b3i (s)b3j (t)qij (5)

where b3i and b3j shall denote uniform cubic B-spline
functions and qij forms are regular grid of 4 × 4 control
points. This example is shown in the left part of Figure 1.
A simplified outline of the surface is shown in gray. The

Figure 1. Connection of uniform bicubic B-spline
patches with second-order continuity. Left: A simpli-
fied outline of a single patch and its control mesh. Right:
Smooth connection of two patches. Curvature continu-
ity is provided because both patches share a part of their
control meshes.

control mesh and the control points are shown in black.
To be useful, the generalized spline surface should of-

fer the same smoothness properties as the patches. There-
fore, neighboring patches are connected with second-
order continuity as shown in the right part of Figure 1.
Apparently, second-order continuity is obtained because
both patches share a subset of their control points. How-
ever, to apply second-order continuity between neigh-
boring patches it is much easier to define a single con-
trol mesh for all patches and to identify the correspond-
ing subsets of the mesh with the individual patches. To
clarify this concept, consider the example from Figure 1.
The generalized bicubic B-spline surface consists of two
patches and is defined on a single control mesh of 5 × 4
control points. The subset of 4 × 4 control points high-
lighted with black dots is identified with left patch, and
the subset highlighted by empty circles is identified with
the right patch. The overlap of both subsets ensures
second-order continuity between both patches.

However, this does not enable irregular meshes as
shown in Figure 2a. For simplicity only a part of the
control mesh around the extraordinary control point in
the center is shown. The rest of the mesh is assumed to
be regular. Therefore, the outer ring of patches is well de-
fined in terms of equation 5. In contrast, the inner patches
do not posses any tensor-product representation due to the
irregularity of the control mesh. For the patches incident
to extraordinary point it is not clear what points should be
chosen to define a regular subset of 4 × 4 control points.
Refer to the highlighted patch and control points in Fig-
ure 2a for confirmation.

At this stage, a surface representation is introduced
that allows to define a B-spline surface composed of sev-



(a) Initial configuration. (b) First subdivision. (c) Second subdivision.

Figure 2. A generalized spline surface with an irregular control mesh. Patches incident to the extraordinary control point
cannot be defined in terms of tensor-product splines. However, subdivision allows to add further rings of tensor-product spline
patches in vicinity of the extraordinary point.

eral tensor-product B-spline patches on a single control
mesh. Furthermore, a certain level of continuity between
neighboring patches is guaranteed. This representation
is called a generalized B-spline surface, but the ulti-
mate goal to define B-spline surfaces on irregular control
meshes is, so far, not achieved. The final step to enable ir-
regular control meshes requires an instrument called sub-
division.

One step of subdivision splits every patch of the sur-
face into four patches. The surface does not change, but
the number of patches used to represent the surface in-
creases. The challenge is to find a new control mesh
for the patches that satisfies this condition. For the regu-
lar case, classical spline theory provides the appropriate
tools for this task: knot refinement. The contribution of
(Catmull and Clark, 1978), (Doo and Sabin, 1978), and
other authors mentioned above is to provide a generaliza-
tion of knot refinement for extraordinary configurations
of the control mesh. This is called a subdivision algo-
rithm.

To refine the control mesh allows to add another ring
of tensor-product B-spline patches in vicinity of the ex-
traordinary point as shown in Figure 2b. It is easily veri-
fied that the new patches are connected with second-order
continuity to its neighbors. A further step of subdivision
adds a further ring of tensor-product splines, see Fig-
ure 2c. Thus, subdivision generates a growing tensor-
product representation of a generalized spline surface in
vicinity of extraordinary points. Indeed, this is the appro-
priate setup to access analytical properties of a general-
ized spline exactly, even in the presence of extraordinary
points.

The generalized spline surface inherits its continuity
properties form the regular connection of neighboring
patches, except at extraordinary points. To analyze con-
tinuity at the extraordinary point is thoroughly dealt with
in the monograph of (Peters and Reif, 2008). In fact, the
major task to construct a subdivision surface is to define
subdivision rules for extraordinary points that guarantee
a sufficient level of continuity.

Generalized bicubic B-spline surface

In this article, the subdivision algorithm of (Catmull and
Clark, 1978) is used. The algorithm is a generaliza-
tion of knot insertion for uniform cubic tensor-product
B-splines. In addition, the surface may contain creases
and corners as features. This is realized with a subset of
the extensions proposed by (Biermann et al., 2000). In
general, the surface is curvature continuous (G2) every-
where, but at extraordinary points it is only normal con-
tinuous (G1).

Feature definition

Features of the surface are defined based on tags applied
to the control mesh. However, the choice of tags may be
interdependent.
Edge tags: Edges of the control mesh can be tagged to be
smooth or crease. By default, edges are smooth, except
for boundary edges that are always creases.
Vertex tags: By default, vertices are smooth. Vertices in-
cident to exactly two crease edges must be either tagged
as a crease vertex or as a corner vertex. Vertices incident
to a single crease edge are tagged as a dart vertex. Ver-
tices incident to three or more crease edges are always
tagged as corner vertices.

Control points

Every subdivision step results in a new control mesh. The
rules to compute new control points are given in this sec-
tion. The presentation of the rules is based on the article
of (Biermann et al., 2000), but all rules are generalized
for non-quad meshes. However, this generalization re-
produces the original rules in case of a quad mesh.
Face points: For each face of the control mesh a new
control point

fi =
1

n

n∑
i=1

pi (6)

is computed as the average of the n vertices pi defining
the face.



Edge points: For each smooth edge of the control mesh
a new control point

ei = w1p1 + w2p2 +
1

4
(f1 + f2) (7)

is computed as the weighted average of the vertices p1

and p2 defining the edge and the face points f1 and f2 of
the two faces incident to the edge. The choice of weights
w1 and w2 depends on the tags of p1 and p2. If both
vertices are (not) smooth the weights are simply w1 =
w2 = 1/4. If one vertex is smooth and the other vertex
is not smooth, the weights are parametrized by θk where
k is the number of faces in the sector of the edge. The
notion of a sector is illustrated in Figure 3.

Figure 3. Crease edges of the control mesh are shown in
bold and divide the mesh around the central vertex into
sectors. Left: The mesh is divided into a sector of two
faces and a sector of three faces. Right: A single sector of
five faces, which is introduced by a crease that terminates
in a dart.

Given the definition of a sector, the weight of the non-
smooth vertex is w = 1

2 cos2 (θk) and the weight of the
smooth vertex is w = 1

2 sin2 (θk) with θk = π/(4k) for
a corner vertex, θk = π/(2k) for a crease vertex and
θk = π/k for a dart vertex. The definition of θk for corner
vertices is modified in comparison to the original rules of
(Biermann et al., 2000).

For each crease edge of the control mesh a new control
point

ei =
1

2
p1 +

1

2
p2 (8)

is computed as the average of the vertices p1 and p2

defining the edge.
Vertex points: The rule for a new vertex point depends
on the tag of the vertex. For each smooth or dart vertex
of the control mesh a new control point is defined by

vi =
1

n2

n∑
i=1

fi +
1

n2

n∑
i=1

(pc + pi) +
n− 3

n
pc (9)

with fi are the face points of the faces incident to the ver-
tex, pi are the surrounding vertices and pc is the position
of the old vertex. For each crease vertex a new control
point

vi =
1

8
p1 +

3

4
pc +

1

8
p2 (10)

is computed as the weighted average of the adjacent
crease vertices p1, p2 and the position of the old vertex
pc. For each corner vertex a new control point is simply
given by vi = pc.

Hull form modeling

The first step to model a hull form is to define a set of
feature curves that gives a rough outline of the surface
and its breakdown into regions. The second step is to
define a surface, or a sufficiently dense set of curves, that
meets the constraints imposed by the feature curves and
geometrically describes the regions in between.

Feature curves

Feature curves subdivide the hull form into several re-
gions and define the geometric transition of neighboring
regions. Three basic types of features curves are used for
hull form modeling: knuckle curves, tangent curves, and
smooth curves.
Knuckle curves: A hull surface is position continuous
(G0) across a knuckle curve. Neither the normals nor the
curvature agree on the knuckle. A variant of a knuckle is
an angle curve with a prescribed angle between the nor-
mals.

A knuckle curve is introduced to the generalized bicu-
bic B-spline surface with a chain of crease edges. Dart
vertices may be used in order to fade out knuckles
smoothly.

Creases provide an intuitive way to define knuckles.
However, the subdivision rules for creases that are pre-
sented above are equivalent to the natural boundary con-
dition. As a consequence, the Gaussian curvature is al-
ways zero on a knuckle. This is potentially unfavorable
in hull form modeling and affects the implementation of
tangent curves. Several knuckle curves may meet at a
corner, but the angle between two consecutive knuckles
is limited to α ≤ 180◦.
Tangent curves: A hull surface is normal continuous
(G1) across a tangent curve. Normal continuity requires
the normals to agree, but normal direction may change
along the tangent curve. In general, the curvature dis-
agrees.

Tangent curves are realized on the generalized B-spline
surface similar to knuckles. A chain of crease edges iden-
tifies the tangent curve. In addition, all faces incident to
the crease edges are restricted to a common plane. This
guarantees a common normal vector on the crease. How-
ever, this construction is also curvature continuous be-
cause the curvature component across a crease coincides
and is always zero.

In comparison to the general definition of a tangent
curve this implementation is quite limited. The surface
is always G2 across a tangent curve as opposed to the
general definition that requires only G1 continuity. Fur-
thermore, it is not possible to change the normal direction
along the tangent curve. Nevertheless, this construction is
useful to realize two major applications of tangent curves
in hull form modeling: the flat of side and the flat of bot-
tom.
Smooth curves: A hull form is curvature continuous
(G2) across a smooth curve. A smooth curve on the gen-
eralized B-spline surface is simply identified by a chain
of smooth edges.



Modeling a Ro-Ro vessel

Figure 4 shows the hull form of a modern Ro-Ro vessel.
A single generalized B-spline surface is used to represent
the entire hull form. A lines plan, which is inferred from
the surface, is shown in Figure 6. It provides the details
about the hull form features that are realizable based on
generalized bicubic B-spline surfaces. Furthermore, the
lines plan conveys an impression of the fairness that is
provided by generalized B-spline surfaces. It is empha-
sized that fair lines are supplied by default.

Figure 4. Hull form of a modern Ro-Ro vessel that is
entirely represented by a single generalized B-spline sur-
face. The vessel has a bulbous bow, a flat side and bot-
tom, a pram type stern, and a skeg. The transition of the
flat side into the bilge initially takes the form of a knuckle
that gradually disappears towards the middle body.

Conventional hull form modeling, that is lines draw-
ing but also most lines-based modeling software, is based
on the methodology of interpolation. This method may
come in two fashions: either additional lines are gener-
ated from the interpolation of an existing lines, alterna-
tively surface patches that interpolate the lines are gener-
ated. Whatever flavor is employed, it is well-known that
interpolation tends to oscillation. This tendency makes
fairing of lines time-consuming. In addition, oscillations
are the reason that it is almost impossible to change a
given set of lines later on. Even small changes may re-
sult in heavy oscillations of other lines, making any pre-
vious efforts on fairing worthless. In contrast, a B-spline
surface is based on the methodology of approximation.
The control mesh of a B-spline surface is a coarse out-
line of the desired shape. The final surface approximates
the control mesh with well-defined behavior. Most im-
portantly, the surface does not oscillate more often than
its control mesh oscillates, also known as the variation
diminishing property.

Unfortunately, this advantage of B-spline surfaces can-
not be utilized with tensor-product surfaces. The rep-
resentation of hull forms needs several patches that are
continuously fitted to each other, but this requires a high
number of control points. Most control points are re-
quired to maintain smooth transitions between neighbor-
ing patches. However, it is difficult to minimize oscil-
lations when the number of control points is high and a
lot of points are constrained by continuity requirements.
This problem is avoided with generalized B-spline sur-

faces. The representation of hull forms requires only a
small number of control points as shown in Figure 5. The
control mesh consists of about 120 control points, where
approximately 15 control points are used in longitudinal
direction and less than ten points are used in transverse
direction. The small number of control points in any di-
rection simplifies the minimization of oscillations signif-
icantly.

The lines plan shown in Figure 6 shows various hull
form features such as a bulbous bow, an advanced tran-
sition of the flat side to the bilge, or a pram-type stern.
These design decisions in terms of hull features are rep-
resented in terms of the control mesh, shown in Figure 5.

Forebody: A bulbous bow is fitted to the hull form.
Essentially, twelve control points are used to define the
shape and area of the bulbous bow. Four of them are
placed in front of the forward perpendicular. The bound-
ary points define the profile of the bulbous bow and the
interior points are used, in conjunction with the lower
four control points at the forward perpendicular, to con-
trol the volume. The boundary points are placed on the
center plane, the lower interior control points are placed
near to center plane, and the upper interior control points
are placed further out. This gives the sections of the
bulbous bow the desired wedge shape. The axis of the
bulbous bow features a slope downwards as required for
a gooseneck type. The slope corresponds to the down-
ward slope of the longitudinal control mesh edges. The
lower four control points of the first station behind the
forward perpendicular are used to control the transition
of the bulb-shaped sections to V-shaped sections.

Around the forward perpendicular bulb-shaped sec-
tions are realized. Afterwards, V-shaped sections are in-
tended that gradually change to U-shaped sections to-
wards the middle body. Accordingly, the control points
are placed on an imaginary V that changes gradually to
an U. The rate at which the control point arrangement
changes determines how fast the sections change from V-
type to U-type.

To minimize the overall curvature of the forebody, the
pronounced V-shaped sections at the bow are joined with
the vertical top of the hull form in a knuckle. The knuckle
terminates in a corner and is connected to the flat of side,
which initially takes the form of a knuckle too. How-
ever, hydrodynamics demand a smooth transition of the
flat side into the bilge below the waterline, but, as usual in
hull form design,G1 continuity is sufficient. The knuckle
and the flat of side are both identified by a chain of crease
edges. They are highlighted as bold edges in Figure 5.
The faces above the crease edges are all vertical, but the
the incident faces below the creases are not vertical every-
where. Initially, the faces are placed according to the V-
shape of the sections. As the section-type changes from
V to U, the flare vanishes. At the middle body they are
also vertical what ensures a common tangent of bilge and
flat side. The flat of bottom is realized similar to the flat
of side. However, the transition of the flat bottom to the
rest of the hull form is smooth everywhere and the inci-
dent faces are all horizontal.



Figure 5. Control mesh of the generalized B-spline surface that is used for the representation of a modern Ro-Ro vessel. The
mesh consists of about 120 control points, where approximately 15 control points are used in longitudinal direction and less
than ten points in transverse direction. Bold lines denote crease edges and thin lines denote smooth edges.

Afterbody: A pram type stern with a trim wedge is re-
alized. Viewed laterally, the longitudinal edges of the
control mesh are placed on a line with an angle towards
the baseline that is the same as the desired angle between
the buttocks and the baseline. An angle of about 10◦ is
chosen. Towards the middle body this angle is gradu-
ally reduced until the longitudinal edges are horizontal.
The length of this transition zone controls the radius in
the buttocks. At the transom the longitudinal edges point
downwards in order to introduce a trim wedge to the hull
form. The submergence of the trim wedge is t = 30 cm
at the design draft.

A skeg is introduced to the hull form in order to assist
course stability of the vessel. Crease edges are employed
to model the boundaries of the skeg as knuckles. For a
smooth transition of the skeg into the flat bottom a hori-
zontal face is placed between the forward end of the skeg
and the rear point at which the flat bottom starts to expand
transversally.

Conclusions

Subdivision is a method to define B-spline surfaces on
control meshes of arbitrary topology. In that, subdivision
addresses the fundamental limitation of B-splines in hull
form modeling: its limitation to quadrilateral surfaces.
To give credit to this contribution, this article refers to
subdivision surfaces as generalized B-spline surfaces.

Relieved from the limitation to four-sided surfaces,
complex hull forms can be entirely represented by a sin-
gle B-spline surface. This simplifies hull form modeling
significantly, but potentially eases downstream usage of
the hull geometry as well because error-prone inconsis-
tencies of the hull form geometry are avoided. The sim-
plification of hull modeling is particularly evident when
it comes to fairing. This term requires curvature conti-
nuity as well as a minimal number of inflection points,
where the latter is the critical point in conventional lines-
based modeling. In contrast, a B-spline surface does not
oscillate more often than its control mesh does and hence
gives the hull designer precise control in this manner.

It is described, how various hull form features are rep-
resented in terms of the control mesh. The lines plan in
Figure 6 gives the details about these features, but like-

wise the given main dimensions and coefficients illustrate
the precise control about the hull characteristics.

Generalized B-spline surfaces are proposed to replace
tensor-product B-splines for hull form representation.
The bicubic B-spline surface described in this article of-
fers a reasonable trade-off between a low degree, curva-
ture continuity, and additional modeling features. They
are successfully utilized for the representation of knuck-
les and, with limitations, tangent curves on the surface.
However, the curvature across tangent curves and knuck-
les is always zero. This is potentially unfavorable in the
context of hull modeling and future work will focus on
this limitation.
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Figure 6. Lines plan of the Ro-Ro vessel shown in Fig-
ure 4.


