lecture 4.11.2010 we had in the last week:

- preparation of atomic beams II: thermodynamics
- cooling in the supersonic jet expansion

today:

- pulsed atomic beams and simulations
- selected examples with supersonic beams
- atom beam diffraction

Ideal Pulsed Beam Source

Pump out time
$$\tau = \frac{V}{S}$$
 $V = Volume$
 $S = Pumping Speed = S_2$

Typical example, V=100 ℓ , S=1000 ℓ /s $\tau = 0.1s$

practical pulsed beam source

large delay time due to mechanical delay

bigger w_e or higher power \Longrightarrow Stronger Force \Longrightarrow shorter delay time possible smaller w_g

attenuation is also a function of time & space

structure of a pulsed valve: miniaturization is the key

simulated sonic nozzle beam shapes

Monte Carlo method (DSMC)

Program developed by Dr. Graham Bird and is free http://www.gab.com.au/

wide beam (55° FWHM); low on axis intensity

De Lavalle (or Bell) Nozzle

- 1. Designed for Maximum Thrust.
- 2. Exit Temperature is quite high.
- 3. A bad source for supersonic beams.

40° Conical Nozzle Simulation

narrow beam (20° FWHM); higher on axis beam intensity (x8 over sonic nozzle)

Comparison between conical and trumpet shaped nozzles

Low temperature achieved where the jet is at high density; important for clustering

acceleration in nozzles

- 1. expansion shown for Argon
- the gas reaches 600m/s over a distance of 2 nozzle diameters in 1 μs
- 3. the acceleration is enormous:

a>5*10⁸ m/s² for Argon a>5*10⁹ m/s² for Helium

Interesting inertial effects in spectroscopy??

skimmers: Campargue type at low intensity beams

density

temperature

Campargue type skimmer in high density beams

density

temperature

long conical skimmer at high beam intensity

large entrance hole, 25[°] full angle, 50 mm length.

density

temperature

arrival time distribution after ~1 meter flight.

TOF Pulse

velocity of supersonic jets

J. Chem. Phys. 118, (19),8690 (2003)

Velocity vs. Temperature

few examples of atom beam applications for fundamental questions

hyperfine spectroscopy HFS of Na isotopes measuring nuclear magnetic and quadrupole moments

isotope production:

spallation reaction with ²⁷AI + 150 MeV p from an accelerator

²⁷AI (p,3pxn)^{25-x}Na

²³Na from atomic beam as reference

selecting a single HFS state with an electrostatic six-pole magnet

a magnetic 6-pole focuses atoms in the sublevel $m_J = +1/2$ of the ground state, it defocuses atoms in the sublevel $m_J = -1/2$

thus the HFS level with $m_J = +1/2$ can selectively be monitored

HFS transitions for Na d-lines

Duong et al., in *Laser Spectroscopy* II, Springer lecture notes 43 (1975)

Helium atom scattering

Helium atom scattering

$$\hbar\omega = \frac{\hbar^2}{2m} (k_i^2 - k_f^2)$$
$$\Delta \mathbf{K} = k_f \sin\theta_f - k_i \sin\theta_i$$

with k_i and k_f initial and final wave vectors, m probe mass

 Θ_i and Θ_f inc. and final scattering angles

focussing of a neutral He beam by diffraction doing optics with an atom beam

focussing of a neutral He beam by diffraction Fresnel zone plate

Nickel zone plate 540 µm diameter 2700 free standing zones center blocked to supress 0th order

Reisinger et al., J. Phys. Chem. A 111, 2007, 12620

Young double-slit experiment with Helium atoms

de Broglie wave interference of C₆₀ molecules

Arndt, Zeilinger etc., Nature 401, 680 (1999)