lecture 3.11.2011
we had in the last week:

- preparation of atomic beams Il
- selected example with supersonic beams

today:

- selected example with supersonic beams

- atom beam diffraction

- ultracold He atom beam scattering from surfaces



atom beam application for fundamental questions
example: hyperfine spectroscopy
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M, state focusing of an atom

consider an atom in a magnetic field: Zeeman interaction Hamiltonian H’

. LB
H =—p;-B F‘EJ:_QJ%

where W, is the magnetic moment with the total angular momentum J, g, is the g-factor
for the state with J, and p,; the Bohr magnetron. Pertubation theory:

Wzeeman = (JMy| H' |IM;) = gsupM,B

with M, the magnetic quantum number of J. For L-S coupling:
J(J+1)+S(S+1)—L(L+1)
2J(J + 1)

gr =1+

In an inhomogeneous magnetic hexapole field a radial force is experienced by the atoms:
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magnetic state selection is an important tool in atomic frequency and
time standards (atomic clocks)
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coming back to our experiment: selecting a single HFS state
with an electrostatic six-pole magnet

a magnetic 6-pole focuses atoms in the sublevel m; = +1/2 of the
ground state, it defocuses atoms in the sublevel m; =-1/2

thus the HFS level with
m; = +1/2 can selectively
be monitored HFS transitions for Na d-lines
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Duong et al., in Laser Spectroscopy |l, Springer lecture notes 43 (1975)



Hexapole state selection and focusing of neutral beam molecules
as side remark

In an electrostatic hexapole field, generated by six alternately charged parallel
rods in a hexagonal configuration, molecules experience a C;

radial force, which is in a first approximation determined -

by the first-order Stark effect + %V/@
+ “,

b _u.g KM %?ng
Stark T B J(J + 1) L
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where [ is the molecular dipole moment and E is the electric field strength.

The molecular z-axis is chosen in the direction of the dipole moment. The radial
force exerted on molecules travelling along the hexapole axis is, to first order, given

by
_6uV, KM

r eqgn. 2
re JUJ+1)

F,

Here, r, is the distance from the hexapole axis to the rods, r is the radial distance
from the axis, and V, is the voltage applied to the hexapole rods. Molecules that are
off-axis are pushed towards the axis if the product KM is negative; they are pulled
away from the axis, and removed, if KM is positive.



As a consequence of egn. (2) and our convention, molecules in states with KM < 0,
will be focused onto a small spot on the axis, provided their velocity

distribution is very narrow. Clearly, states with either K or M = 0, or KM > 0 cannot
be selected.
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hexapole focusing machine, used for studying collision processes between
state-selected, oriented molecules and atoms

S. Stolte et al., J. Chem. Soc. Faraday Trans., 1995, 91, 205



Focusing curve for a He-seeded beam of CHjl
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e.g., at 9 kV molecules in the (1,+-1,+-1) stated will be focussed



doing optics with an ultracold atom beam
focussing of a neutral He beam by diffraction
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focussing of a neutral He beam by diffraction

Fresnel zone plate

Nickel zone plate
540 ym diameter

2700 free standing zones
center blocked to supress 0 order

Reisinger et al.,
J. Phys. Chem. A 111,
2007, 12620
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Young double-slit experiment with Helium atoms
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Non - destructive Diffraction Grating “Mass Spectrometer”

Previous: Na atoms, Pritchard et al (1988); He*, Mlynek et al (1991)
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electron microscope pictures of SIN, transmission gratings
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He Atom Diffraction Pattern for 300 K Beam
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at low source temperatures new diffraction peaks appear
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The first unambiguous detection of “He dimer (E;, = 1.3 mK)
W. Schéllkopf and J. P. Toennies, Science 266, 1345 (1994)



Single Slit Diffraction is Envelope of Grating Diffraction
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Matter Waves: Feynmann: Lecture Notes in Physics

from J. P. Toennies



The He Dimer Diffraction Pattern and Slit Function
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Grisenti, Schollkopf, Toennies, Hegerfeld, Kéhler and Stoll, Phys. Rev. Lett. 85, 2284 (2000)
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Determination of the bond length and binding energy of the Helium dimer
by diffraction from a transmission grating

Patterns of 4He cluster
beams diffracted

from a 100 nm period
transmission diffraction
grating with different
nozzle temperatures. The
odd order dimer diffraction
peaks are marked by an
asterisk.
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Result: d (He,) =5.2 nm !!

Grisenti, Toennies et al., PRL 85, 2000, 2284
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the 4He dimer: the world‘s weakest bound and

largest ground state molecule
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the fullerene molecule C,,
60 carbon atoms arranged in a truncated icosahedral shape
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effect of velocity selection of Cg,

normalized count rate
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Cgqo diffraction pattern with

thermal beam
Viean = 200 m/s

with slotted disk velocity

selector
Vmean = 117 m/s
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200 um separation, 174 diff. vibrational modes, thus distinguishable




