Universität Rostock Physikalische Chemie

Prof. Dr. Joachim Wagner

Rostock, 8.11.2017

Physikalische Chemie II — Übung 3

Abgabetermin 17.11.2017 vor der Vorlesung

Aufgabe 1 1 P

Wie groß ist die Aktivität von Wasser in einer Lösung, deren Wasserdampfdruck bei 100 °C $p_{\text{H}_2\text{O}} = 700$ torr beträgt?

Aufgabe 2 2 P

Der Dampfdruck einer Lösung von $6.69\,\mathrm{g}$ Ca(NO₃)₂ in $100\,\mathrm{g}$ Wasser ist $p'=746.9\,\mathrm{torr}$ bei $100\,^{\circ}$ C. Wie groß ist der Dissoziationsgrad α des Salzes, wenn Sie näherungsweise annehmen, die Aktivitätskoeffizienten aller gelösten Spezies seien $f_i=1$?

Aufgabe 3 2 P

Zwei Volumina mit $V_1 = V_2 = 1$ L sind durch eine für Wasserstoff durchlässige Pd-Membran getrennt. V_1 wird mit He bis zu einem Druck von $p_1 = 1$ bar befüllt, V_2 wird mit H₂ bis zu einem Druck von $p_2 = 1.1$ bar befüllt. Das System ist bei 20 °C thermostatisiert. Welche Drücke stellen sich in den Volumina V_1 und V_2 im Gleichgewicht ein?

Aufgabe 4 3 Punkte

Über Dampfdruckmessungen wurden Aktivitäten von Aceton in Aceton/Chloroform-Gemischen bestimmt. Bestimmen Sie die Aktivitäten und Aktivitätskoeffizienten für Chloroform bei den angebebenden Zusammensetzungen.

x_{Aceton}	a_{Aceton}
1.00	1.00
0.94	0.94
0.88	0.87
0.73	0.74
0.63	0.57
0.51	0.42

Aufgabe 5 2 Punkte

Eine Lösung von Anilin in Benzol gefriert bei $\theta=-1.25\,^{\circ}$ C. Berechnen Sie die Konzentration in Massen-% und die Molarität der Lösung.

Gefrierpunkt des Benzols: $\theta_{\rm m} = 5.49\,{}^{\circ}{\rm C}$

Dichte der Lösung: $\rho = 0.975 \,\mathrm{g \, cm^{-3}}$

Kryoskopische Konstante: $K_K = 5.065 \,\mathrm{K\,kg\,mol}^{-1}$