

Wiederholung der letzten Vorlesungsstunde:

Komplexchemie, Wasserstoffbrückenbindung, Wasser, Phasendiagramm

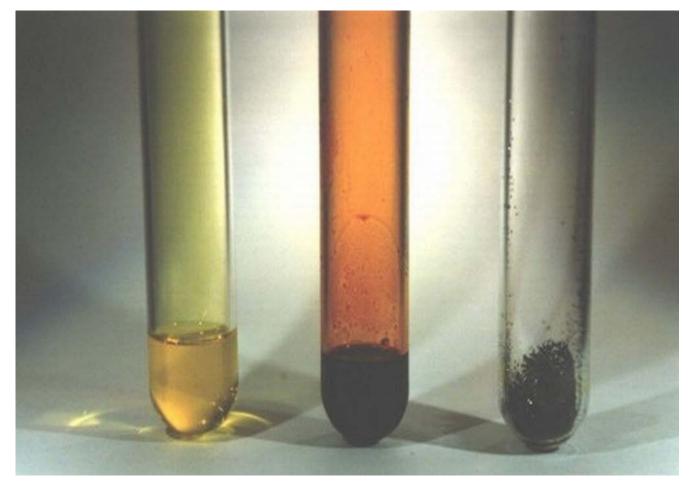
Thema heute: Die Halogene und deren Verbindungen

Die Elemente der 7. Hauptgruppe – Halogene

Fluor, Chlor, Brom, Iod (und Astat)

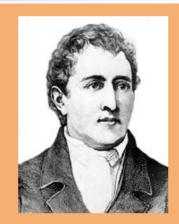
13	14	15	16	17	18
		Н	Не		
В	С	N	0	F	Ne
Al	Si	Р	S	CI	Kr
Ga	Ge	As	Se	Br	Ar
In	Sn	Sb	Те	_	Xe
TI	Pb	Bi	Po	At	Rn

Eigenschaften der Halogene


	Fluor	Chlor	Brom	lod
Aussehen	gelbliches Gas	gelbgrünes Gas	braune Flüssigkeit	blauschwarze Kristalle
Schmelzpunkt °C	- 220	- 101	- 7	+114
Siedepunkt °C	- 188	- 34	59	185
Dissoziationsenergie kJ/mol	158	244	193	151
Oxidationsvermögen			nimmt ab	
Bindungslänge in pm	142	199	228	267

328

Chlor Brom Iod


Chlor, Cl

 $MnO_2 + 4 HCI \rightarrow MnCl_2 + Cl_2 + 2 H_2O$

Scheele, 1774: dephlogistierte Salzsäure

Berthollet: oxidierte Salzsäure

Davy, 1810: Element! chloros = gelbgrün

Fluor, F

fluor = Fluß — Flußspat (Fluorit), CaF_2 — Moissan, 1896

Brom, Br

bromos = Gestank - Balard, 1826

lod, I

ioeides = veilchenfarbig — Courtois, 1811

Elementares lod läßt sich durch die sog. lod-Stärke-Reaktion nachweisen! Blaufärbung der Stärkelösung zeigt die Anwesenheit von lod.

Gewinnung (Darstellung) der Halogene

Reaktionsprinzip: $2 X^{-} \Rightarrow X_2 + 2e^{-}$

Oxydationspotentiale: F + 2,85 V

CI + 1,36 V

Br + 1,02 V

I + 0.54 V

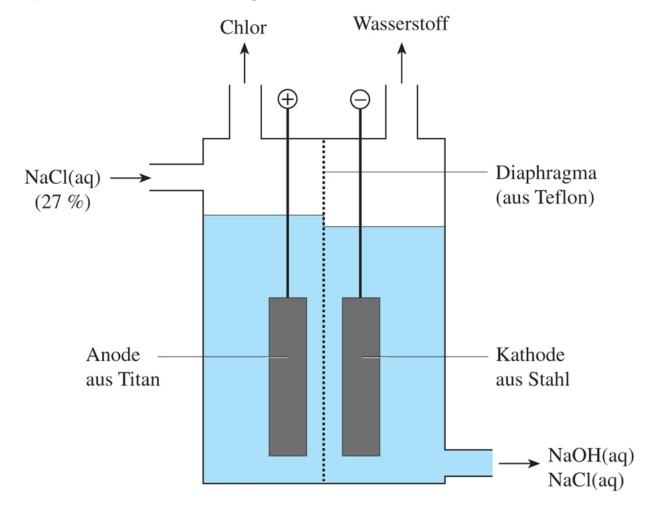
<u>Darstellungsmöglichkeiten:</u>

F₂ elektrochemisch Schmelzflußelektrolyse

Cl₂ elektrochemisch Schmelzflußelektrolyse Elektrolyse von NaCl-Lösung

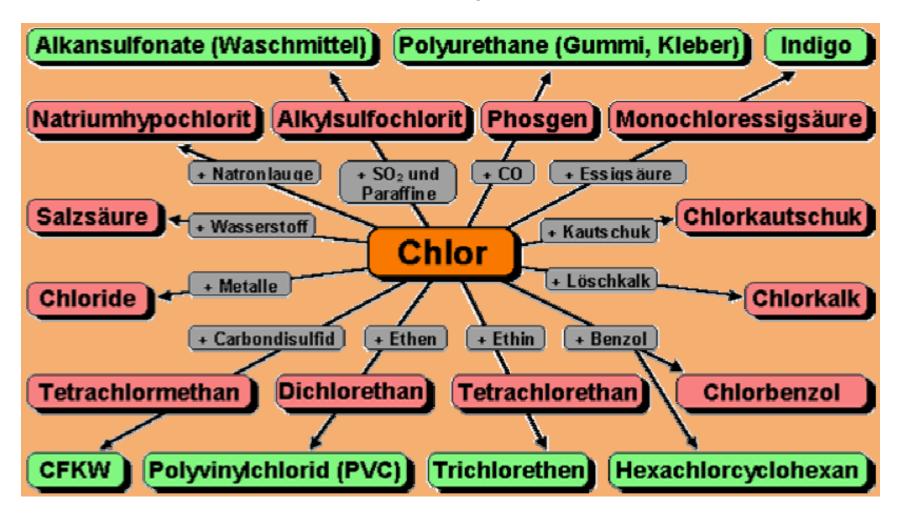
Weltweit jährlich mehrere Millionen Tonnen pro Jahr

Br₂ elektrochemisch Schmelzflußelektrolyse


l₂ elektrochemisch Schmelze u. Lösung

Beispiele:

$$2 \text{ MnO}_4^- + 16 \text{ H}^+ + 10 \text{ Cl}^- \implies 2 \text{ Mn}^{2+} + 5 \text{ Cl}_2 + 8 \text{ H}_2\text{O}$$



Elektrolyse von NaCl-Lösung

Verwendung von Chlor

Die Halogene sind starke Oxidationsmittel

$$\text{Cl}_2 + 2 \, \text{e}^- \rightarrow 2 \, \text{Cl}^-$$

z.B.
$$2 \text{ Fe} + 3 \text{ Cl}_2 \rightarrow 2 \text{ FeCl}_3$$

Oder: Natrium verbrennt mit

Chlorgas zu NaCl

Halogenwasserstoffverbindungen HX Herstellung:

$$CaF_2 + H_2SO_4 \rightarrow 2HF + CaSO_4$$

NaCl +
$$H_2SO_4 \rightarrow HCl + NaHSO_4$$

 $H_2 + Cl_2 \rightarrow 2HCl$

$$PBr_3 + 3H_2O \rightarrow 3HBr + H_3PO_3$$

$$I_2 + H_2S \rightarrow 2HI + S$$

Fluorwasserstoff, HF

- HF ist ein Gas
- HF bildet starke Wasserstoffbrückenbindungen aus
- Die wäßrige Lösung von HF heißt Flußsäure
- Flußsäure ätzt Glas
- Verwendung: Synthese von AlF₃ bzw. Na₃[AlF₆]; Kryolith zur Gewinnung von Aluminium
- Verwendung: Darstellung von UF₆, zur Isotopentrennung von ²³⁸U und ²³⁵U über Uranhexafluorid: UO₂ + 4 HF \leftrightarrows UF₄ + 2 H₂O; UF₄ + F₂ \leftrightarrows UF₆

Chlorwasserstoff, HCl

• Gewinnung:

NaCl +
$$H_2SO_4$$
 $\xrightarrow{25^{\circ}C}$ NaHSO₄ + HCl \uparrow

technische Chlorierungen

$$CH_4 + 4 CI_2 \xrightarrow{h \cdot v} CCI_4 + 4 HCI$$

Labor-Methoden

$$NH_4CI + H_2SO_4 \rightarrow NH_4HSO_4 + HCI \uparrow$$

reiner Chlorwasserstoff durch Chlor-Knallgas-Reaktion

$$H_2 + Cl_2 \xrightarrow{h \cdot v} 2 HCl$$
 - 96,0 kJ/mol

Chlorwasserstoff, HCl

- HCl ist ein Gas
- Die wäßrige Lösung von HCI heißt Salzsäure
- Salzsäure ist maximal ca. 38 40 % (Gew.-Prozent) "rauchende Salzsäure"
- Salzsäure ist eine sog. starke Säure
- Reaktionen: $HCl_{(g)} + H_2O \rightarrow H_3O^+ + Cl^-$
- Die Salze der Salzsäure heißen "Chloride"
- Halogenidionen bilden mit Silberionen einen schwerlöslichen Niederschlag von AgX, (AgCl, AgBr oder Agl) der als Nachweis für diese Ionen genutzt werden kann.

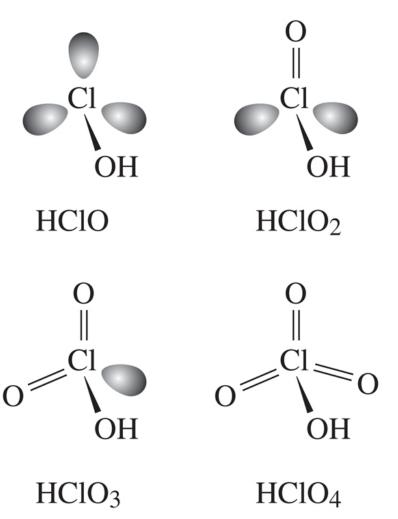
Halogensauerstoffverbindungen und deren Säuren

Übersicht über die bisher nachgewiesenen binären Chloroxide. (Die in Klammern gesetzten Spezies existieren nur bei tiefen Temperaturen.)

Verbindungstyp	Oxidationsstufe						
	Ī	II)	III	IV	٧	VI	VII
CIO _x		(CIO)		CIO ₂		(CIO ₃)	
Cl_2O_y	Cl ₂ O	(Cl ₂ O ₂)	(Cl_2O_3)	Cl ₂ O ₄ *	(Cl ₂ O ₅)	Cl ₂ O ₆ **	Cl ₂ O ₇

bei Raumtemperatur als Chlorperchlorat: CIOCIO₃

^{**} im festen Zustand als Chlorylperchlorat [ClO₂]⁺[ClO₄]⁻



Halogensauerstoffverbindungen und deren Säuren

Formel	OxSt.	Struktur	Name
HCI	-1	HCI	Salzsäure
			Chlorid
HCIO	+1	HOCI	Hypochlorige Säure
			Hypochlorit
HCIO ₂	+3	HOCIO	Chlorige Säure
			Chlorite
HCIO ₃	+5	HOCIO ₂	Chlorsäure
			Chlorat
HCIO ₄	+7	HOCIO ₃	Perchlorsäure
			Perchlorat

Halogensauerstoffverbindungen und deren Säuren

Verbindungen, in denen Atome mit hohen Oxidationszahlen vorliegen, sind gute Oxidationsmittel.