Plant, Cell and Environment (2017) 40, 2042-2067

Effects of discrete bioactive microbial volatiles on plants and fungi

Birgit Piechulla 🔟, Marie Chantal Lemfack & Marco Kai

Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany

ABSTRACT

Review

Plants live in association with microorganisms, which are well known as a rich source of specialized metabolites, including volatile compounds. The increasing numbers of described plant microbiomes allowed manifold phylogenetic tree deductions, but less emphasis is presently put on the metabolic capacities of plant-associated microorganisms. With the focus on small volatile metabolites we summarize (i) the knowledge of prominent bacteria of plant microbiomes; (ii) present the state-of-the-art of individual (discrete) microbial organic and inorganic volatiles affecting plants and fungi; and (iii) emphasize the high potential of microbial volatiles in mediating microbe-plant interactions. So far, 94 discrete organic and five inorganic compounds were investigated, most of them trigger alterations of the growth, physiology and defence responses in plants and fungi but little is known about the specific molecular and cellular targets. Large overlaps in emission profiles of the emitters and receivers render specific volatile organic compound-mediated interactions highly unlikely for most bioactive mVOCs identified so far.

Key-words: plant-associated microorganisms; plant-microbe interaction; ammonia; bioactive compounds; carbon dioxide; hydrogen cyanide; hydrogen sulfide; microbial volatile organic compounds; nitrogen oxide; secondary metabolism; VOCs.

INTRODUCTION

Plants are well-known producers of scents, because flowers, leaves and also roots release a wealth of volatile organic compounds (VOCs). It is estimated that collectively plants produce close to 30 000 different VOCs using as much as 20% of their fixed CO₂ (Baldwin 2010). The prominent feature of volatiles is their potential to act in short as well as long distances, which was well documented for plant–insect and plant–plant bi-trophic and tri-trophic interactions belowground and aboveground (Rasmann *et al.* 2005; Baldwin *et al.* 2006; Heil and Silva Bueno 2007; Dicke and Baldwin 2010; Insam and Seewald 2010, summarized in Delory *et al.* 2016). Although many volatiles were assigned to be synthesized and released by plants, one has to take into account that natural habitats are not sterile but are more or less colonized by microorganisms. The

Correspondence: B. Piechulla. Phone: +0049 381 4986130; e-mail: birgit.piechulla@uni-rostock.de

application of new technologies such as fast sequencing methods and culture independent species determinations highlighted the incredible complexity of the microbial populations and communities. To underline this ubiquitous appearance in most ecosystems, for example, there are more than 10^{11} bacterial cells and 5×10^{6} bacterial species in 1 g soil, or 10⁷ bacterial cells per square cm² leaf area (summarized in Farré-Armengol et al. 2016). Given the estimated 10⁹ km² of the phyllosphere worldwide, the dominance of microorganisms on plants becomes obvious. Subsequently, the wealth of microbial metabolic activities is also witnessed. Particularly, rich in structural complexity and diversity are compounds of specialized metabolism (antibiotics, toxins, siderophores, etc.), which have the potential to influence the neighbouring organisms and the community(ies). In the past decade, it was also documented that beside diffusible compounds, microorganisms are an outstanding source of VOCs, characterized by their high vapour pressure, low boiling point and a molecular mass of below 300 Da (summarized in Schulz and Dickschat 2007; Effmert et al. 2012; Lemfack et al. 2014; Dickschat 2017).

Compared with ~2500 known flower scent compounds (Knudsen et al. 2006; http://www2.botany.gu.se/SCENTbase. html), already ~1300 microbial VOCs (mVOCs) from only ~600 microorganisms are presently registered in the mVOC database (Lemfack et al. 2014; http://bioinformatics.charite. de/mvoc/). Overall, relatively little thought has been given to the microbial sources of odour, and limited information of biological/ecological roles and mode of actions of these compounds are available, despite the ubiquitous and often massive appearance of microorganisms. It is commonplace that microorganisms, bacteria and fungi, are responsible for the production of aromas of foodstuff, for example, cheese, wine, beer and yoghurt, which have been selected for human preferences. Attention was given to mVOCs as indicators for contaminations and pollutants with potential consequences for human health (Korpi et al. 2009). Beside diverse medical applications of mVOCs new approaches in agriculture and biotechnology are also envisioned (summarized in Piechulla and Lemfack 2016). Altogether, studies on fungal and bacterial VOCs lag behind the knowledge on plant-derived VOCs. This shortcoming is particularly pronounced when considering that 10¹⁶ microbial species are suspected to exist on Earth (Farre-Armengol et al. 2016). Consequently, responses and reactions to mVOCs in receiver organisms are more frequent than previously recognized or estimated. Therefore special impetus is needed to explore the effects of mVOCs in receiver organisms. Urgent and interesting questions are as follows: What are the roles of mVOCs in habitats/ecosystems? Which discrete microbial volatiles are bioactive? Which targets are affected in the receiver organism? What are the reactions of the receiver

ceiver organism? What are the reactions of the receiver organisms to these volatiles? Can the responses in the receiver be generalized, or are the signals receiver-specific? Do generalized mVOC signatures/fingerprints exist? Furthermore, little is known about the evolution of mVOC-dependent microbereceiver interactions.

The potential of mVOCs was indicated in the past decade. In various experimental co-cultivation set ups, the effects of mVOCs on/in organisms were explored, such as alterations in plants (Chung et al. 2015; Kai et al. 2016), insects (Davis et al. 2013), soil fauna, bacteria and fungi (De Vrieze et al. 2015; Schmidt et al. 2015; Werner et al. 2016). Regarding plants, observations and results obtained from various experiments, range from, for example, strong growth inhibitions to significant growth promotions. Such heterogeneous results may occur because interactions of microbes with receiver organisms are complex; they can be disparate, diffuse and seemingly independent. Moreover, mVOCs act as multitrophic signals in ecologically complex systems, which are not well studied or defined to date. It is also critical whether the plants perceive cues from a discrete (individual, single) or a mixture of mVOCs. To date, most effects mediated by mVOCs were obtained from co-cultivation experiments, where plants were exposed to the complex mixtures of inorganic and organic volatiles emitted by the microbes. It also has to be taken into account that the compositions of the bacterial blends depend very much on the substrate availability and metabolic activities of the microorganisms (Fiddaman and Rossall 1994). To substantiate and provide functional evidence for the mVOC action potential, it is necessary to identify discrete bioactive compounds and test them individually or in defined mixtures. As a first step, we analysed plant microbiomes to identify prominent plant-associated bacteria, which might be relevant in volatile-mediated microbe-plant interactions. Secondly, the actual knowledge of discrete bioactive mVOCs is summarized and presented here. This systematic exploration gives an overview of respective compounds/compound classes affecting plants and fungi and summarizes the processes that are influenced, including those critical to plant health. This will offer tangible practical benefits in addressing agricultural and environmental problems. In addition, the question regarding specificity is addressed by comparing the microbial volatilomes with the plant volatilomes.

THE POTENTIAL OF PLANT MICROBIOMES

It is well accepted that plant microbiomes greatly promote or compromise plant health and productivity (Hartmann *et al.* 2008). Over the past years, studies to describe these plant microbiomes substantially increased and the use of direct sequencing of the environmental samples provided further valuable insight into the phylogenetic diversity of microbes associated with plants or presence in different micro-habitats like flowers, roots, leaves and rhizospheres (Bakker *et al.* 2013; Bulgarelli *et al.* 2013; Knief *et al.* 2012; Philippot *et al.* 2013; Turner *et al.* 2013; Knief 2014; Guttman *et al.* 2015).

© 2017 John Wiley & Sons Ltd, Plant, Cell and Environment, 40, 2042-2067

The analysis of the most prominent and recent studies on plant microbiomes by metagenomic sequencing indicated bacteria as the dominant taxa within the microorganisms. Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria are the most prominent phyla of bacteria associated with plants (Bai et al. 2015). This review summarized almost 700 bacterial genera that inhabit diverse plant micro-habitats (Fig. S1), and the 30 most listed genera are presented in Fig. 1. In plant microbiomes, the Flavobacterium (90.9%), Pseudomonas (90.9%), Rhizobium (90.9%) and Sphingomonas (81.8%) are most frequently found, while the presence of Acidovorax, Bacillus. Bradyrhizobium, Cryseobacterium, Devosia. Mesorhizobium, Methylobacterium, Massilia, Microbacterium, Nocardioides, Pedobacter, Phenylobacterium, Rhodococcus, Streptomyces and Variovorax range from 55 to 75%.

It is well established that microorganisms including plantassociated bacteria produce a wealth of small volatile compounds with the potential to act as infochemicals and to play an important role in mediating plant-microbe interactions (Kai et al. 2009; Wenke et al. 2010; Peñuelas et al. 2014). So far, volatilomes of 112 bacterial genera have been analysed and are consigned in mVOC database (Lemfack et al. 2014). From a comparison of the genera appearing in plant microbiomes and those present in mVOC database, it is summed up that the volatile emission of ~10% of the plant microbiomes were so far analysed (Fig. S1). Albeit the volatile profiles of plant-associated bacteria like Bacillus, Burkholderia and Pseudomonas that were commonly studied (Table 1), this present analysis also highlights the potential of the unknown volatilomes of plant-associated microbes. To fill this lack of knowledge and to better understand the network that governs plant-microbe interactions, much emphasis has to be put on this research field in the future.

BIOLOGICAL EFFECTS OF DISCRETE MICROBIAL ORGANIC VOLATILE COMPOUNDS ON PLANTS AND FUNGI – STATE-OF-THE-ART

Test system and compound classes

In the past decade many microbe-plant co-cultivation experiments were performed showing volatile-mediated reactions in plants (summarized in Kai et al. 2016). The rational for using these co-cultivations is that in nature, microorganisms appear in the same habitat as plants and subsequently volatiles released from microorganisms might affect plants under natural conditions and vice versa. However, the dual co-cultivations as they usually were performed have several drawbacks: (i) in nature microbial communities rather than one bacterial species colonizes a habitat; (ii) bacterial cell densities on Petri dishes of one particular species easily reaches 10¹¹ CFU, which in average is much higher than reached in natural communities; (iii) in nature, the bacterial metabolism depends on the different and variable plant exudates; and (iv) microorganisms usually live under harsh environmental conditions, for example, substrate limitation and sub-optimal temperatures rather than under comfortable laboratory conditions (exceptions from this rule are, for example, the rhizosphere, which is rich in

Figure 1. Relative abundance of dominant bacterial genera in plant microbiomes. The data represent the relative occurrence (%) of the 31 most dominant genera of plant microbiomes (analysis based on Table S1). Bacterial genera marked with (**) are also present in the mVOC database.

exudates, and the presence of carcass or soil enriched with manure and whey). It will be a challenge in the future to design laboratory experiments that allow to unravel the genuine ecological and biological roles of the microbial volatiles that appear under real and nature-simulated conditions. To acquire a first idea about the biological functions of these mVOCs, reductionist approaches similar as in plant-insect interactions (via electroantennograms) and in plant-plant interactions (via application of individual compounds) are supportive. Therefore, single mVOCs or reconstituted mVOC mixtures should be investigated to identify and explore bioactive mVOCs and decipher their underlying mechanisms of action. As there is a great need regarding this knowledge, an initial step was to screen the existing literature and summarize the effects of discrete mVOCs on plants and fungi. These mVOCs were organized according to compound classes (Table 1). Presently, 94 discrete mVOCs (less than 10% of the listed compounds in mVOC database) with bioactivity were described, and 50 and 57 affect plants and fungi, respectively. Alcohols and ketones were most frequently tested, followed by S- and N-containing compounds. This comes not as a surprise because alcohols and ketones contribute with 16% and 13%, respectively, to the diversity of microbial volatiles (Schenkel et al. 2015). Although aromatic compounds (14%) and terpenes (11%) are substantially present in microbial volatilomes, so far, only

nine terpenes and three aromatic compounds were investigated, indicating a gap of knowledge.

Investigated plants and bacteria

In more than 50% of the experiments (43 of 77), the model plant Arabidopsis thaliana was selected as a receiver organism, while Lactuca sativa, Nicotiana tabacum, Lycopersicon sp., Brassica oleracea, Capsicum annum, Glycine max, Citrus sp., Atractylodes sp., Zea mays, Malus sp., Medicago sp., Cistus sp., Amaranthus sp. and Populus niger, each were only investigated a few times. Phytophthora, Sclerotinia, Rhizoctonia, Fusarium, Alternaria and Botrytis were the most frequently phytopathogenic fungi tested. The 12 individual mVOCs mostly used in assays are dimethyl disulfide, butanediol, 1-octen-3-ol, 2-undecanone, indole, 2-nonanone, 1-undecene, 1-hexanol, dimethyl trisulfide, benzaldehyde, 2-aminoacetophenone, and acetophenone (Fig. S2). Only one example of a defined mixture of four ketones was successfully applied, which affected the growth of the phytopathogenic fungi Rhizoctonia solani (Table 1). The most frequently mVOC producers investigated are bacteria such as Pseudomonas sp., Bacillus sp., Burkholderia sp., Serratia sp., Stenotrophomonas sp., Collimonas sp. and Streptomyces sp. and fungi like Aspergillus sp., Fusarium sp., Muscodor sp., and Alternaria sp.

Compound class/discrete mVOC	Emitter	Receiver: plant	Receiver: fungi	Reference
Acids – derivatives				
Acetic acid	Pseudomonas sp., Bacillus sp.		<i>Sclerotinia sclerotiorum</i> , inhibition of mycel growth and sclerotia formation; mic 4.2, 9.2 mg, respectively	Giorgio <i>et al.</i> 2015
Ethyl octanoate	Saccharomyces cerevisiae CR-1		<i>Phyollostricia citricarpa</i> inhibition of germination and appressoria formation (1 uL mL^{-1})	Toffano <i>et al.</i> 2017
Isoamyl acetate Isovaleric acid	Muscodor albus Pseudomonas sp.		inhibition of phytopathogenic fungi Phytophthora infestans, inhibition of sporangia eermination (min 30%, inhibition)	Strobel <i>et al.</i> 2001 De Vrieze <i>et al.</i> 2015
N-acyl-homoserine lactones (AHLs)	Gram negative bacteria	Hordeum vulgare, root morphology		summarized in Schulz, Dickschat 2017
6-Pentyl-pyrone	Trichoderma viridae, Trichoderma harzianum	Seedling deformation, seedling blight		El-Hasan and Buchenauer
	Trichoderma asperellum Trichoderma atroviridae	Arabidopsis thaliana, ISR Arabidopsis thaliana, ISR A. thaliana, root morphogenesis, auxin responsive gene expression, 50–200 uM		Kottb <i>et al.</i> 2015 Garnica-Vergara <i>et al.</i> 2015
Alcohol				
2R,3R butandiol 2S,3S butandiol	Bacillus subtilis GB03, Bacillus amyloliquefaciens IN937a	A. thaliana resistance against Erwinia carotovora, 10 ng-1000 mg; tobacco, PR		Ryu <i>et al.</i> 2003 Ryu <i>et al.</i> 2004
	Pseudomonas chlororanhis O6	genes and defence priming upregulated tobacco enhanced orowth ISR against		Han <i>et al.</i> 2006 Han <i>et al</i> 2006
	a section of the sect	Erwinia carotovora but not against		Ryu et al. 2003
		Pseudomonas syringae		Spencer et al. 2003
		A. thaliana drought survival, stomata closure and aperture 100 mM		Cho <i>et al.</i> 2008
	Enterobacter aerogenes	Zea mays resistant against Northern corn loaf blight fingus Satosubagia turvica		D'Alessandro et al. 2014
Chokol K	Bacillus badius M12 Epicloe sp.	Apple pieces, polyphenol oxidase	inhibition of growth and spore germination of funei	Gopinath <i>et al.</i> 2015 Steinebrunner <i>et al.</i> 2008
m-Cresol	Ampelomyces, Cladosporium	<i>A. thaliana</i> , suppression of symptoms, ISR, 0.001–100 mM	0	Naznin <i>et al.</i> 2014
cyclohexanol	several Pseudomonas sp.		S. sclerotiorum mycel growth, sclerotial	Fernando et al. 2005
2-Dodecanol	Schewanella algae YM8		Aspergillus flavus, mycelia and conidia inhibition, 5.200no 1 -1	Gong et al. 2015
2-Ethyl-1-hexanol	several <i>Pseudomonas</i> spp.		S. sclerotiorum mycel growth inhibition, sclerotial	Fernando <i>et al.</i> 2005
Furfuryl alcohol	Pseudomonas sp.		<i>P infestans</i> , inhibition of sporangia germination (min. 30% inhibition)	De Vrieze et al. 2015
1-Hexanol	Tuber melanosporum, Tuber indicum, Tuber borchii	A. thaliana growth inhibition, bleaching, 130 ppm	~	Splivallo <i>et al.</i> 2007

Table 1. Discrete microbial organic volatile compounds effecting plants and fungi

© 2017 John Wiley & Sons Ltd, Plant, Cell and Environment, 40, 2042–2067

Discrete bioactive mVOCs 2045

(Continues)

Compound class/discrete mVOC	Emitter	Receiver: plant	Receiver: fungi	Reference
	Burkholderia sp., Cellulomonas uda, Chromobacterium violaceum CVO, Escherichia coli OP50, Peeudominas sp. Serraria sp.	A. thaliana, MAMP response, flg-22 induced ethylene production; flg22 induced ROS production inhibited, 1 ng-1 mg		Blom <i>et al.</i> 2011a
	Pseudomonas simiae	Glycine max, seed germination inhibition,		Vaishnav <i>et al.</i> 2016
1-Heptanol	Paraburkholderia phytofirmans	A. thaliana, growth promotion, salinity tolerance 100 nσ		Ledger <i>et al.</i> 2016
2-Methyl-1-butanol	Xylaria sp. PB3f3 (endophyte of Haematoxylon brasiletto)	Amaranthus hypochondriacus, Solanum lycopersicon, 4–160 ug mL ⁻¹		Sánchez-Ortiz et al. 2016
	S. cerevisiae CR-1		<i>P. citricarpa</i> inhibition of germination and anoressoria formation $(1 \ \mu L \ m L^{-1})$	Toffano <i>et al.</i> 2017
2-Methyl-1-propanol	<i>Xylaria sp.</i> PB3f3 (endophyte of <i>H brasiletto</i>)	A. hypochondriacus, S. lycopersicon, $4-160.00$	· · · · · · · · · · · · · · · · · · ·	Sánchez-Ortiz et al. 2016
3-Methyl-butanol	P. phytofirmans	A. thaliana, growth promotion, salinity tolerance. 100 ng		Ledger <i>et al.</i> 2016
	S. cerevisiae CR-1	0	<i>P. citricarpa</i> inhibition of germination and anon-essoria formation $(1 \mu 1 m 1^{-1})$	Toffano <i>et al.</i> 2017
3-Octanol	T. melanosporum, T. indicum, T. borchii	A. thaliana growth inhibition, bleaching, 13 and 130 ppm		Splivallo <i>et al.</i> 2007
1-Octen-2-ol	<i>Trichoderma</i> sp. Mould fungi	A. thaliana, enhanced JA/ET dependent, wounding-dependent plant gene expression, resistance against Borytis cinerea	controlling conidiation, concentration dependent	Nemcovic <i>et al.</i> 2008 Kishimoto <i>et al.</i> 2007
1-Octen-3-ol	Penicillium paneum T. melanosporum, T. indicum, T. horchii	A. thaliana growth inhibition, bleaching, 13 and 130 nom	Penicillium paneum, germination self inhibitor	Chitarra <i>et al.</i> 2004 Splivallo <i>et al.</i> 2007
	<i>Trichoderma</i> sp. many fungi		controlling conidiation, concentration dependent inhibition of fungal spore production, insect attractant	Nemcovic et al. 2008 Berendsen et al. 2013, Chitarra et al. 2004, Davis et al. 2013
	Agarius bisporus		Lecanicillium fungicola germination inhibition, 1.25%, w/v	Berendsen et al. 2013
	Bacillus pumilus (S32), Paenibacillus sp (S19)		<i>Phaeomoniella chlamydospora</i> antifungal activity, $41-410 \text{ mg L}^{-1}$	Haidar <i>et al.</i> 2016
1-Pentanol	Bacillus sp.	pathogen infection reduced in pepper)	reviewed in Chung <i>et al.</i> 2015
3-Pentanol	Many bacteria, fungi	Capsicum annum ISR, resistance against Xanthomonas axonopodis and cucumber		Choi <i>et al.</i> 2014

• D. 1 100/10/10 01 0

Compound class/discreteEmittermVOCEnter\$Phenyl-ethanolSerratia plymuthica HRO C482-Phenyl-ethanolSerratia plymuthica HRO C482-Phenyl-ethyl-alcoholPseudomonas sp.Phenyl-ethyl-alcoholHypoxylon anthochroum BlaciPhenyl-ethyl-alcoholHypoxylon anthochroum Blaci13-tetradecadiene-1-olPseudomonas fluorescens SS10113-tetradecadiene-1-olPseudomonas fluorescens SS101I3-tetradecadiene-1-olPseudomonas fluorescens Pseudomonas fluorescens Pseudomonas fluorescens SS101I3-tetradecadiene-1-olSeveral Pseudomonas fluorescens Pseudomonas fluorescens Pseudomonas fluorescens Pseudomonas fluorescens fluorescens fluorescens Pseudomonas fluorescens Pseudomonas fluorescens Pseudomonas fluorescens Pseudomonas fluorescens Pseudomonas fluorescens fluorescens	ia)	Receiver: fungi	Reference
-ethanol -ethanol thyl-alcohol lecadiene-1-ol bthde bctenal 2-furaldehyde cetaldehyde	ia)		
-ethanol ethanol hyde bhyde bradiene-1-ol bctenal ctenal cetaldehyde cetaldehyde	ia)		
-ethanol thyl-alcohol ecadiene-1-ol btenal bctenal 2-furaldehyde cetaldehyde	ia)		Wenke et al. 2012
thyl-alcohol lecadiene-1-ol shyde chyde ctenal ctenal cetaldehyde cetaldehyde	ia)	<i>P. infestans</i> , inhibition of mycelial growth (min. 30% inhibition)	De Vrieze et al. 2015
lecadiene-1-ol bhyde brade bctenal 2-furaldehyde cetaldehyde		ς.	Ulloa-Benitez <i>et al.</i> 2016
shyde ctenal 2-furaldehyde cetaldehyde	seeding respiration, 12.5–500 ug mL ⁷ SSI01 Nicotiana tabaccum cv, Xanthi-nc, fresh weight increased at 50 ng		Park <i>et al.</i> 2015
	ceae,	Pochonia chlamydosporia, Paecilomyces lilacinus, spore growth inhibition $4-6$ g L^{-1} ; mycelium growth inhibition, $16-40$ g L^{-1}	Zou et al. 2007
	A. <i>thaliana</i> , root architecture Atractylodes lancea, increase of leaf net photosynthetic rate, superoxide dismutase, catalase, phenylalanine ammonia lyase, polyphenol oxidase		Gutiérrez-Luna <i>et al.</i> 2010 Zhou <i>et al.</i> 2016
		S. sclerotiorum mycel growth and sclerotial germination inhibited	Fernando <i>et al.</i> 2005
	um, A. thatiana growth inhibition, bleaching, 13-130 ppm	D	Splivallo <i>et al.</i> 2007
		Antifungal activity against Blumeria graminis, Fusarium oxysporum, Colletotrichum fragarie, Borinneas	Hayashi <i>et al.</i> 1981
Micrococcaceae, Rhizobiaceae, Xanthomonadaceae	ceae,	D. cineted P . chlamped provides P . lilacinus, spore growth inhibition $6-8 \text{ g L}^{-1}$, mycelium growth inhibition, $17-34 \text{ o } 1^{-1}$.	Zou et al. 2007
Tetradecanal Rhizobacteria Undecanal <i>Pseudomonas</i> sp.	A. <i>thaliana</i> , root system architecture	<i>P. infestans</i> , inhibition of mycelial growth (min. 30% inhibition)	Gutiérrez-Luna <i>et al.</i> 2010 De Vrieze <i>et al.</i> 2015
Aliphatic compounds 1-Decene Alcaligenaceae, Bacillales, Micrococcaceae, Rhizobiaceae, Vanthomonadaeaa	ceae,	<i>P. chlamydosporia, P. lilacinus,</i> spore growth inhibition 6 g L^{-1} ; mycelium growth inhibition, $27-37 \circ 1^{-1}$.	Zou <i>et al.</i> 2007
1-Dodecene Pseudomonas sp.		<i>P. infectures</i> , inhibition of sporangia germination	De Vrieze et al. 2015
Ethylene Tuber sp.	Cistus incanus, A. thaliana, root morphology altered		Splivallo <i>et al.</i> 2009

Discrete bioactive mVOCs 2047

(Continues)

Compound class/discrete mVOC	Emitter	Receiver: plant	Receiver: fungi	Reference
2-Methyl-n-1-tridecene	P. fluorescens SS101	N. tabaccum cv Xanthi-nc, fresh weight imnroved with 5 no		Park et al. 2015
Nonane	S. algae YM8		A. flavus, mycelia and conidia inhibition, $5-200 \text{ ug } \mathrm{L}^{-1}$	Gong et al. 2015
Pentadecane	Burkholderia sacchari LMG 19450 Serratia entomophilia A1MO2.	A. thaliana, MAMP response, 1 ng-1 mg	0	Blom <i>et al.</i> 2011a
Tridecane	Paenibacillus polymyxa E681	A. thaliana, ISR against P. syringae, priming gene expression PR1, ChiB, VSP2, 0.1 to 10 mM		Lee <i>et al.</i> 2012, Han <i>et al.</i> 2006
1-Undecene	P. simiae Pseudomonas	G. max, seed germination, 50-100 ug	Phytophthora infestans growth inhibition	Vaishnav <i>et al.</i> 2016 Hunziker <i>et al.</i> 2015
	Pseudomonas tolaasii Dsaudomonas oonusinooo	Broccoli and lettuce seed germination inhibition (50–500 <i>ug</i>)	Agaricus bisporus discoloration, 2.5 ug, Pleurotus ostreatus mycel growth inhibition, 2.5 ug	Lo Cantore <i>et al.</i> 2015 Defined of al 2016
	r seuuomonus ueruguiosu		Asperguus juruguus, ury mass reduction, 100 ppm	DIIAIU et al. 2010
Ketones, – derivatives				-
Acetoin	Bacultus sp. GB03, Bacultus amyloliquefaciens IN937a B. subtilis FB17	A. Inaliana, reduction of soft rot caused by Erwinia carotovora A. Inaliana, ISR activated via SA/ET not JA pathway		Kyu <i>et al.</i> 2003 Ryu <i>et al.</i> 2004 Rudrappa <i>et al.</i> 2010
	B. subtilis, B. amyloliquefaciens	Citrus, reduction of post-harvest effects caused by Penicillium digitatum, Penicillium italicum, Penicillium crustorum		Arrebola <i>et al.</i> 2010
	B. amyloliquefaciens long C, B. megaterium SA1. B. pumilus 1-6	Lactuca sativa, root length and number of lateral root increased. 0.1 $u_{\rm E}$ -10 mg		Fincheira et al. 2016
Acetophenone	rhizobacteria	A. thaliana, root architecture		Gutiérrez-Luna et al. 2010
	Burkholderia ambifaria	A. thatiana, increase of plant biomass, 1 ng, 1 ug, 1 mg	growth reduction of <i>Rhizoctonia solani</i> , no growth reduction <i>Fusarium solani</i> , 1 ng, 1 ug, 1 mg	Groenhagen et al. 2013
	Pseudomonas sp.		<i>P. infestans</i> , inhibition of sporangia germination (min. 30% inhibition)	De Vrieze et al. 2015
2-Butanone	many bacteria and fungi B. subtilis GB03, Bacillus anulolionafacions D037a	ISR, protection against <i>P. syringue</i> , induction oxylipin biosynthesis		Song and Ryu 2013
	P. fluorescens SS101	N. tabaccum cv Xanthi-nc, fresh weight, increase at 50 ng		Park <i>et al.</i> 2015
Decan-2-one	Xanthomonas campestris pv. vesicatoria 85–10		Mycel growth inhibiton R. solani, 0.01–100 umol	Weise et al. 2012
2-Pentylfuran	B. subtilis GB03, Bacillus amyloliquefaciens IN937a, Bacillus megaterium XTBG34	A. thaliana growth promotion		Zou <i>et al.</i> 2010
3-Hexanone	B. ambifaria	A. thaliana, increase of plant biomass, 1 ng, 1 ug, 1 mg		Groenhagen <i>et al.</i> 2013
				(Continues)

Table 1. (Continued)

Compound class/discrete mVOC	Emitter	Receiver: plant	Receiver: fungi	Reference
	Pseudomonas sp.		<i>P. infestans</i> , inhibition of sporangia germination	De Vrieze et al. 2015
4-Methyl-thio-2-butanone	B. ambifaria	A. thaliana, reduction of plant biomass, no	(mm). 20% mmonton	Groenhagen et al. 2013
1-Methyl-thio-3-	B. ambifaria	necrosis, no cniorosis, 1 ng, 1 ng, 1 mg A. <i>thaliana</i> , reduction of plant biomass, no merrosis no chlorosis 1 ng 1 ng 1 mg		Groenhagen et al. 2013
2-Nonanone	B. ambifaria	псстояы, по спотокы, т пк, т ик, т лик	growth reduction R. solani, Alternaria alternata,	Groenhagen et al. 2013
	P. chlororaphis 449 Pseudomonas sp., Bacillus sp.		no growth reduction <i>x: solutur</i> , 1 ng, 1 ng, 1 ng <i>R. solari</i> , growth inhibition, 10–100 <i>u</i> mol <i>S. sclerotiorum</i> , inhibition of mycel growth and	Popova <i>et al.</i> 2014 Giorgio <i>et al.</i> 2015
2-Octanone	P. aeruginosa Pseudomonas sp.		Actional formation, inte 4.5, 104 mg, respectively A. <i>funigatus</i> , dry mass reduction, 100 ppm <i>P. infestans</i> , inhibition of mycelial growth (min.	Briard <i>et al.</i> 2016 De Vrieze <i>et al.</i> 2015
3-Octanone	T. melanosporum, T. indicum, T. horchii	A. thaliana growth inhibition, 13 and		Splivallo <i>et al.</i> 2007
4-Octanone	Trichoderma sp. B. ambifaria		controlling conidiation, concentration dependent growth reduction R. solani, no growth reduction	Nemcovic et al. 2008 Groenhagen et al. 2013
	Pseudomonas sp.		<i>E solani</i> 1 ng, 1 ug, 1 mg <i>P infestans</i> , inhibition of mycelial growth (min.	De Vrieze et al. 2015
Phenyl acetone	Pseudomonas sp.		50% inhibition) <i>P. infestans</i> , inhibition of mycelial growth (min.	De Vrieze et al. 2015
1-Phenyl-3-pentanone	Mycoleptodonoides aitchionii		50% initibition) A. alternata, Alternaria brassicicola, Alternaria brassicae, Colletotrichum orbiculare, Corynespora oraziozle ishibition of emodial ecount prove	Nishino et al. 2013
Phenyl propanedione	Pseudomonas sp.		<i>casacota</i> , infinition of injectial growth, spore germination, lesion formation, 35 ppm <i>P. infestans</i> , inhibition of mycelial growth (min. 2007, 11-11-12-20	De Vrieze et al. 2015
1-Phenyl propane-1-one	B. ambifaria		30.76 initional) growth reduction <i>R. solani</i> , no growth reduction <i>E</i> <u>solani</u> , 1 <u>ac</u> 1 <u>ac</u> 1 <u>ac</u>	Groenhagen <i>et al.</i> 2013
Propiophenone	Pseudomonas sp.		<i>F. solant</i> , 1 ng, 1 ng, 1 mg <i>P. infestans</i> , inhibition of mycelial growth (min. 300, inhibition)	De Vrieze et al. 2015
6,10,14-Trimethyl-2-	rhizobacteria	A. thaliana, root system architecture		Gutiérrez-Luna et al. 2010
pentauccanone 2-Undecanone	X. campestris pv. vesicatoria 85–10 B. ambifaria		mycel growth promotion R. solani, 0.01–100 umol growth reduction R. solani, A. alternata, no growth	Weise et al. 2012 Groenhagen et al. 2013
	P. chlororaphis 449 Pseudomonas sp. Bacillus sp.		R. solard, growth inhibition, 10–100 umol R. solard, growth inhibition, 10–100 umol S. sclerotiorum, inhibition of mycel growth and	Popova <i>et al.</i> 2014 Giorgio <i>et al.</i> 2015

(Continues)

Compound class/discrete mVOC	Emitter	Receiver: plant	Receiver: fungi	Reference
	P. phytofirmans	A. thaliana, growth promotion, salinity		Ledger <i>et al.</i> 2016
	P. aeroginosa	tolerance, 100 ng	A. fumigatus, dry mass reduction, 100 ppm	Briard <i>et al.</i> 2016
ô-Cadinene	Trichoderma virens	A. thaliana growth promotion, defence		Zhang <i>et al.</i> 2007
β -Caryophyllene	T. virens	against <i>B. cinerea</i> A. <i>thaliana</i> growth promotion, defence		Zhang <i>et al.</i> 2007
m-Cymene	Fusarium oxysporum MSA35 Pseudomonas sp., Bacillus sp.	agamst <i>D. cintered</i> Lettuce seedlings growth promotion	<i>S. sclerotiorum</i> , inhibition of mycel growth and sclerotia formation: mic 13.8.17.2 ms. respectively	Minerdi <i>et al.</i> 2011 Giorgio <i>et al.</i> 2015
β -Elemene	T. virens	A. thaliana growth promotion, defence		Zhang <i>et al</i> . 2007
Eucalyptol	<i>Hypoxylon anthochroum</i> Blaci (endophyte of <i>Bursera lancifolia</i>)	against D. cutered A. hypochondriacus, Panicum miliaceum, Trifolium pratense, Medicago sativa, inhibiton of germination, root elongation, seedling restriction 12 5-500 no n1 -1		Ulloa-Benitez <i>et al.</i> 2016
Farnesol	Candida alhicans	econing respinancy, 12:2 200 ag int	Candida albicans. self inhibition	Hornby et al. 2001
Germacrene D	T. virens	A. thaliana growth promotion, defence against B. cinerea		Zhang <i>et al.</i> 2007
Limonene	Pseudomonas sp., Bacillus sp.)	S. sclerotiorum, inhibition of mycel growth and sclerotia formation, mic 17.7–30.1 mg respectively	Giorgio et al. 2015
(–)-Thujopsene	Laccaria bicolor	Populus, A. thaliana lateral root formation, 6.4 pmol		Ditengou et al. 2015
Aromatic compounds Butvlated hydoxytoluene	C alone VM8		4 Havire micelia and conidia inhibition	Grong of al 2015
Durytarcu IIyuoxy iotuciic	D. ugue TIMO		$5-200 \text{ ug } \mathrm{L}^{-1}$	001118 et m. 2010
2,4-Bis(1,1- dimethvil-inhenol	S. algae YM8		A. flavus, mycelia and conidia inhibition, $5-200$ in $1-1$	Gong et al. 2015
Methyl-benzoate	Ampelomyces, Cladosporium	A. thaliana supression of symptoms, ISR, 1 u _M -100 mM	1 80 007-0	Naznin et al. 2014
N-containing compounds Acetamide	Alcaligenaceae, Bacillales, Micrococcaceae, Rhizobiaceae, Varthomondaceae		<i>P. chlamydosporia</i> , <i>P. lilacinus</i> , spore growth inhibition $2-4$ g L ⁻¹ ; mycelium growth inhibition, $53-67 \circ 1 - 1$	Zou et al. 2007
1-Butanamine	Antitututuraaaacac Alcaligenaceae, Bacillales, Micrococcaceae, Rhizobiaceae, Xanthomonadaceae		P. chlarge D_{const} is the filacinus, spore growth inhibition 20–21 g L ⁻¹ , mycelium growth inhibition 32–44 o Γ^{-1} .	Zou et al. 2007
	Arthrobacter agilis UMCV2	<i>Medicago sativa</i> , growth, development, 8 mM		Velazquez-Bererra <i>et al.</i> 2011

Table 1. (Continued)				
Compound class/discrete mVOC	Emitter	Receiver: plant	Receiver: fungi	Reference
<i>N</i> , <i>N</i> - dimethylhexadecanamine (related to QS signal)				
2,4-Dimethyloxazole	S. algae YM8		A. flavus, mycelia and conidia inhibition, $5-200 \text{ mot} \text{ 1}^{-1}$	Gong et al. 2015
2,5-Dimethylpyrazine	P. aeruginosa Bacillus pumilus (S32), Paavihacillus est (S10)		A funigates dry mass reduction, 100 ppm Phaeomoniella chlamydospora antifungal activity, 100-2000 mar 1 -1	Briard <i>et al.</i> 2016 Haidar <i>et al.</i> 2016
Indole	t uenaoucuas sp. (512) Burkholderia sp., C. uda, C. violaceum CVO, E. coli OP50, Pseudononas sp. Serratia sp., Stenotrophomonas rhizophila ep10-	A. thatiana, block of ethylene production, high indole: increase of oxidative burst, 1 ng–1 mg		Blom <i>et al.</i> 2011a
Methanamine	poo soil borne bacteria Alcalisenaceae. Bacillales.	A. thaliana, root growth	P. chlamvdosnoria. P. lilacinus. snore erowth	Bailly <i>et al.</i> 2014 Zou <i>et al.</i> 2007
	Micrococcaceae, Rhizobiaceae, Xanthomonadaceae		inhibition $7-9$ g L ⁻¹ ; mycelium growth inhibition, $21-33$ g L ⁻¹	
N-methyl-N- nitrosoisobutyramide	M. albus		Trichoderma sp., Colletotrichum sp., Fusarium sp., Aspergillus sp., Geotrichum sp. inhibition of radial growth, 0–1 mg; DNA alkylation	Hutchings et al. 2017
4-Nitroguaiacol Nitropentane	P. simiae Pseudomonas sp.	G. max, seed germination, 50–100 ug	<i>P. infestans</i> , inhibition of mycelial growth (min. 30% inhibition)	Vaishnav <i>et al.</i> 2016 De Vrieze <i>et al.</i> 2015
Phenanzine	P. chlororaphis O6	ISR		Han <i>et al.</i> 2006 Ryu <i>et al.</i> 2003 Spencer <i>et al.</i> 2003
Quinoline	P. simiae	<i>G. max</i> , seed germination reduced, 50–100 <i>up</i>		Vaishnav <i>et al.</i> 2016
Trimethyl amine	Geotrichum candidum	٥	G. candidum, self inhibiton	Robinson et al. 1997
2-acetyl thiazole	Pseudomonas sp.		<i>P. infestans</i> , inhibition of sporangia germination (min 30% inhibition)	De Vrieze et al. 2015
Benzothiazole	several Pseudomonas sp.		S. sclerotiorum mycel growth, sclerotial	Fernando <i>et al.</i> 2005
	Alcaligenaceae, Bacillales, Microoccaceae, Rhizobiaceae, Xanthomonadaceae		$\stackrel{P}{C}$ chlamydosporia, P. lilacinus, mycelium growth inhibition, 29–158 g L^{-1}	Zou <i>et al.</i> 2007
SMC	P. simiae P. aerueinosa	G. max, seed germination, 50–100 ug	A funisatus, dry mass reduction. 100 nnm	Vaishnav <i>et al.</i> 2016 Briard <i>et al.</i> 2016
SOMO	S. plymuthica 4Rx13	A. thaliana, growth reduction, 0.5 umol-0.5 mmol		Kai <i>et al.</i> 2010

© 2017 John Wiley & Sons Ltd, Plant, Cell and Environment, 40, 2042–2067

Discrete bioactive mVOCs 2051

⁽Continues)

Compound class/discrete mVOC	Emitter	Receiver: plant	Receiver: fungi	Reference
	Bacilhus cereus C1L	ISR in tobacco and maize against B. cinerea, Coohlioholus heterostronhus 0.1 to 10 mM		Huang et al. 2012
	Bacillus sp. B55	A. thatiana growth promotion, 0–1 mM		Meldau <i>et al.</i> 2013
	B. ambifaria	<i>A. thaliana</i> , increase of plant biomass, 1 ng, 1 <i>ug.</i> 1 mg	growth reduction <i>R. solani</i> , no growth reduction <i>F solani</i> . 1 no. 1 no.	Groenhagen et al. 2013
	Pseudomonas sp., Bacillus sp.	0	S. sclerotiorum, inhibition of mycel growth and sclerotia formation: mic 31 4, 73, mor respectively	Giorgio et al. 2015
	P. tolaasii	Broccoli and lettuce seed germination inhibition, 2.5 ug; growth stimulation, 0.312 and 0.625 ug	A. bisporus discoloration, 0.156 ug-20 ug. P. ostreatus mycel growth inhibition, 1.25-20 ug	Lo Cantore et al. 2015
	P. aeruginosa)	A. fumigatus, dry mass reduction, 100 ppm	Briard et al. 2016
DM1S	several <i>Pseudomonas</i> spp.		 sclerotiorum mycel growth, scleroual germination 	Fernando <i>et al.</i> 2005
	B. ambifaria		growth reduction <i>R. soluni</i> , <i>A. alternata</i> ; no growth reduction <i>F. solani</i> , 1 ng, 1 ug, 1 mg	Groenhagen et al. 2013
	S. algae YM8		A. flavus, mycelia and conidia inhibition, $5-200 \text{ ug } \text{L}^{-1}$	Gong et al. 2015
	Pseudomonas sp., Bacillus sp.		S. sclerotiorum, inhibition of mycel growth and sclerotia formation: mic 24 mg	Giorgio et al. 2015
Methanethiol	P. tolaasii	Broccoli and lettuce seed germination inhibition, 50–500 ug	A. bisporus discoloration,100 ug; P. ostreatus mycel growth inhibition, 50 ug	Lo Cantore et al. 2015
S-methyl-butanethioate	Pseudomonas sp.		<i>P. infestans</i> , inhibition of sporangia germination (min. 30% inhibition)	De Vrieze et al. 2015
S-methyl-methane- thiosulphonate	B. ambifaria		Growth reduction R. solani, no growth reduction E solani, 1 ng. 1 ng.	Groenhagen et al. 2013
-	Pseudomonas sp.		<i>P. infestans</i> , inhibition of mycelial growth (min. 30% inhibition)	De Vrieze et al. 2015
Synthetic mixtures				
Decan-2-one, undecan-2- one, dodecan-2-one, 10- methylundecan-2-one	X. campestris pv. vesicatoria 85–10		Concentration dependent effect on mycel growth of <i>R. solani</i> , 0.09–9 <i>u</i> mol	Weise et al. 2012

Altogether, this overview shows that only a very limited number of mVOC producers and discrete mVOCs were so far in the focus of research interests. Therefore, more bacteria, fungi and individual compounds, contributing with small or large amounts to the VOC spectrum, need to be investigated in the future to decipher the microbial volatile language comprehensively.

Recorded parameters

In the past decade, the receiver organisms, plants and fungi, were explored by evaluating robust and easily recordable parameters, and so far only in a few cases less assessable molecular mechanisms, markers or targets were investigated (Table 2, Fig. 2). Changes in growth, biomass, morphology and seed/spore germination were the most obvious and frequently registered alterations that occurred after fumigation with discrete mVOCs. Effects on the physiology of plants such as photosynthesis or abiotic stresses (salinity and drought) were seldom explored. More emphasis was put on the investigation of plant defence mechanisms. The general observation of improved induced stress resistance (ISR) was underpinned by showing the involvement of characteristic features such as reactive oxygen species (ROS), microbial associated molecular patterns (MAMP), salicylic acid, jasmonic acid and ethylene signalling cascades, activation of pathogen related (PR) proteins and stress enzymes. It is also very likely that these response reactions include activations of gene expression via transcription factors, for example, WRKY18 (Wenke et al. 2012). Apparently, volatiles produced by microbes are able to help plants in the defence against potential intruders like pathogenic fungi or bacteria by inducing systemic resistance (e.g. Kottb et al. 2015). It is further interesting to note that all mVOC classes contribute to the reduction of fungal mycelium and spore growth, while mVOC alcohols, ketones and aliphatic compounds cause widespread effects in plants (Table 2). So far, no mVOC aldehyde and terpenoid was found/tested to induce ISR. Moreover, several mVOC compound classes have dual functions and cause growth promotion and growth reduction at certain experimental conditions (Table 2).

First steps elucidating the potential effects of discrete bioactive mVOCs were performed; however, more detailed and specific experiments are needed to unravel the respective targets and cellular and molecular reactions. For example, it has to be clarified (i) whether mVOCs interact with specific receptors and kicking-off special reactions and signal cascades in plants; (ii) whether general and global responses are dominantly addressed; or (iii) whether the signals are plant- or fungalspecific? Regarding the specificity, two aspects have to be considered. (a) Are the volatile compounds solely emitted by bacteria, fungi or plants or do the VOC profiles overlap? More than 70 compounds appear in common in the volatilomes of the three organismal groups (Fig. 3, Table S2). Owing to this overlapping emission potential, it will be difficult to decide in the habitat from which source a bioactive compound originates; consequently, specific VOC-mediated interactions are highly unlikely for most bioactive mVOCs identified so far. Specificity can be reached by sole phyla-emission, genus-emission or

species-emission of distinct VOCs. At the present stage of knowledge, 13-tetradecadien-1-ol, 2-methyl-n-1-tridecene, 1phenylpropane-1-one, N,N-dimethyl hexadecanamine and 2.4-dimethyloxazole are solely emitted by bacteria (not by fungi and plants), while 6-pentyl-pyrone, chokol K and 5-pentyl-2-furaldehyde are only released by fungi (Table S2). These compounds have the potential to mediate specific interactions. (b) Do mVOCs trigger specific/individual effects in the receiver organism? At present, it appears that dimethyl disufide, butanediol, 1-octen-3-ol and 2-undecanone have a rather broad spectrum of cellular targets. Dimethyl disulfide altered phenomena range from plant growth reduction, ISR, reduced seed germination, fungal discoloration, mycelium growth reduction and also include contradictory results such as seedling and plant growth promotions (Table 1& 2). A similar wide array of physiological parameters were addressed by 2,3-butanediol (ISR, PR gene activation, improved drought survival, stomata closure and aperture affected and growth promotion) and by 2-undecanone (growth promotion, salinity tolerance, fungal mycelium growth promotion as well as inhibition, reduced sclerotia formation). These results would support the conclusion that many discrete bioactive mVOCs generate pleiotropic effects rather than interacting with specific targets (molecules and/or pathways) in the plant. At this stage of knowledge, only one single mVOC (N-methyl-Nnitrosoisobutyramide) is known which specifically and singularly affects a defined feature (DNA alkylation) in fungi (Table 1). A receiver (plant)-specific mVOC was so far not detected, and its identification has to be postponed until adequate analyses demonstrate its existence. To increase the chances to detect such specific mVOCs, more compounds of the complex volatile spectra of the microorganisms, particularly including those compounds with minor contributions in a blend, need to be investigated in the future. This approach is expected to be successful in plant research because individual mVOCs specifically affecting vertebrates, invertebrates and bacteria were already described (summarized by Piechulla, unpublished), although the ultimate targets also remain to be determined.

In summary, the results obtained must be taken as snap shots because comprehensive and systematic analysis and sets of data are still missing. Rather general and multiple effects instead of very specific and distinct functions of (discrete) mVOCs were observed in plants (Fig. 2), most likely due to the fact that studies glanced so far at the morphology and phenotype but did not identify specific targets.

BIOLOGICAL EFFECTS OF MICROBIAL INORGANIC VOLATILE COMPOUNDS ON PLANTS – STATE-OF-THE-ART

Beside VOCs, the bacterial volatile bouquet also includes molecules of inorganic nature, for example, ammonia, hydrogen cyanide, carbon dioxide, hydrogen sulfide and nitric oxide. Although it is known for a long time that bacteria emit inorganic volatiles (Emerson *et al.* 1913; Clawson and Young 1913; and others), investigations reporting on volatile-mediated interactions between plants and bacteria often did not consider the

Organisms						Chemical classes	classes			
PLANT	Parameters	Acids	Alcohols	Aldehydes	Aliphatic compounds	Ketones	Terpenoids	Aromatic compounds	N-containing compounds	S-containing compounds
Growth	Biomass/growth Seed germination/growth	•	* +		* +	→ ←	÷		•	→ →
Defence response	Altered root morphology/growth Induced systemic resistance Phytopathogenic fungi	• + 🗲	• + 🗲 →	+	• + 🗲	+ 🗲 🗲	+ →	÷	• ←	~
	SA, JA, ET dependent signalling PR genes/ priming ROS		~~ ~		÷	~				
	Ethylene production Stress enzymes		•	•						
	MAMP dependent response Post-harvest effects		÷	÷	←	•				
Physiology	Photosynthesis Altered stomata closure/aperture		+		←					
	sammy toterance Drought survival Auxin denendent gene expression		←							
FUNGHI	Mural arouth	€ ◀								
	Spore germination	⊦→	⊦→	⊦→	⊦→	⊦→	H	F	F	€→
	Spore growth	•	~	→	· →	~	→	→	→	• →
	Scierotinia formation Discoloration	←								4
	Fungal growth					+				-
	DNA alkylation								←	

Table 2. Correlation of effects in plants and fungi with mVOC compound classes

Figure 2. Overview of effects in plants and fungi due to distinct microbial volatiles. Presentation is extracted from Table 1. Colour code: green – altered parameters in plants, brown – altered parameters in fungi, dark blue – bacteria.

Figure 3. Overlap of emission of discrete mVOCs of bacteria, fungi and plants. Numbers are deduced from Table S2.

inorganic compounds as potential active agents. In fact, out of 32 selected research articles describing direct effects of volatiles on plant growth (starting 2003 with the article of Ryu *et al.* 2003, Table S3), 20 at least mentioned inorganic volatiles. However, the features of the inorganic volatiles are important to consider in organismal interactions because the action potential of these compounds range from plant growth promotion owing to, for example, carbon dioxide to killing due to, for example, HCN (Table 3). Furthermore, indirect actions via affecting phytopathogenic fungi or bacteria also have to be considered.

Carbon dioxide

Bacteria generally emit carbon dioxide (CO₂) due to respiration (e.g. tricarboxylic acid cycle) or fermentation processes. Because plants assimilate CO2 via photosynthesis, it is conceivable that also bacterial CO₂ can be incorporated by plants. Researchers in the past years discussed that the emission of bacterial CO₂ is effective in certain co-cultivation bioassays (Kai and Piechulla 2009; Kai et al. 2016; Piechulla and Schnitzler 2016). Particularly, in test systems that were sealed with Parafilm® to prevent the escape of volatile compounds, researchers observed significant plant growth promotions. In such cases, it was underestimated that sealing of the test system not only inhibits the diffusion of VOCs but simultaneously results in an accumulation of CO₂. Kai and Piechulla (2009) reported that within 24 h of cultivation, the CO₂ level in the sealed growth containers rose from 390 to 3000 ppm. In correlation with the elevated CO₂ levels, strong growth promotion of A. thaliana plants was observed. This effect could be neutralized in the same sealed system by trapping the CO₂ with barium hydroxide (Ba(OH)₂). Similar results were shown for the sealed co-cultivation of bacteria and Physcomitrella patens (Kai and Piechulla 2010).

Plants increase their growth and biomass, shift their flowering time and enhance their photosynthetic activity owing to elevated CO_2 levels (reviewed in Jin *et al.* 2015; Becklin *et al.* 2016). Therefore, it is no surprise that CO_2 released from bacteria co-cultivated with plants can support plant growth (Table 3). Researchers are aware of this phenomenon (Table S3), Ledger *et al.* (2016), for instance, explored the potential influence of CO_2 on plant growth promotion by comparing sealed system with non-sealed systems and observed no difference in plant growth. To clarify the role and

HSV Consolution induction U(s) production indecore (Cu production indecore (Cu production (Cu product	Compound class/ inorganic volatile	Emitter	Receiver: Plant	Receiver: Fungi	Receiver: Bacteria	Reference
Imitition of primary root growth of Arabidopsis thatiana to the industry industry in the industry industry in the industry industry in the industry industry in the industry industry industry in the industry industry industry in the industry indus	HCN	Chromobacterium violaceum CV0, Pseudomonas protegens CHA0, Pseudomonas aeruginosa (strains PA01a, PA01b, TBCF10839, PA14, TB, PUPa3), Pseudomonas chlororaphis subsp. aureofaciens ATCC13985, Serraria nhumuhica IC14	Killing of Arabidopsis thaliana			Blom <i>et al.</i> 2011b
Inhibition of cytochrome exidate respiration in potato roots Detersions effects on wild radish weed root (<i>Raphauns raphanistrum</i>) and subterranean clover root (<i>Trifolium</i> subterranean clover root (<i>Trifolium</i>) subterranean clover root (<i>Trifolium</i>) subte		P. protegens CHAO, P. aeruginosa (strains PAO1, PA14)	Inhibition of primary root growth of Arabidopsis thaliana		Suppression of <i>Bacillus</i> subtilis biofilm formation and	Rudrappa <i>et al.</i> 2008
Deterious effects on wild radish weed root (<i>Raphanus raphanistrum</i>) and subterranean clover root (<i>Trifolium</i> subterranean clover root (<i>Trifolium</i> subterranean clover root (<i>Trifolium</i> subterranean clover root subterranean clover root inhibition of beam (<i>Phaseolus vulgaris</i> var. Saxa) Inhibition of beam (<i>Phaseolus vulgaris</i> var. Saxa) Inhibition of lettuce (<i>L. sutiva</i> L. vari co. <i>Boniul</i>) and lettuce (<i>L. sutiva</i> L. vari co. <i>Boniul</i>) and lettuce (<i>L. sutiva</i> L. vari <i>Sutiva</i> or Montana or Market Favouritio dry weigin Reduction of aboveground biomass of <i>Echinochola crus-gali</i> Reduction of subveycometh biomass of <i>Echinochola crus-gali</i> Reduction of lettuce and girah Growth inhibition of lettuce and Burkholderia cenocepacia SG-2. Toskity to Burkholderia grad		50% of Potato – and wheat rhizosphere isolated Pseudomonads	Inhibition of cytochrome oxidase respiration in potato roots			Bakker and Schippers 1987
Inhibition of bean (<i>Puseolus vulgaris</i> var. Saxa) Inhibition of lettuce (<i>Lactuca sativa</i> L. ev. Salad Bowl and Montana) root elongation Reduction of bean (<i>Phaseolus vulgaris</i> ev. Bornina) and lettuce (<i>L. sativa</i> L. var. Sativa ev. Montana or Market E-sourite) dry weight Reduction of a boveground biomass of E-shinochola crus-galli Reduction frequetat (<i>Abuilon theophrast</i>) Induced necrosis on the rootlets of spinach Growth inhibition of lettuce and Barnyard grass Promotion of competitiveness and suppression of Burkholderia K56-2 Toxicity to Burkholderia multivorans		P. fluorescens WSM3455	Deleterious effects on wild radish weed root (Raphanus raphanistrum) and subterranean clover root (Trifolium subterraneum)			Flores-Vargas and O'Hara 2006
Inhibition of lettuce (Lactuca sativa L. cv. Salad Bowl and Montana) root elongation Reduction of bean (<i>Phaseolus vulgaris</i> cv. Bonita) and lettuce (L. sativa L. var. Sativa cv. Montana or Market Favourite) dry weight Reduction of aboveground biomass of Eduction of aboveground biomass of Echinochola crus-galls Reduced the growth of Velvetleaf (<i>Abutilon theophrasti</i>) Induced necrosis on the rootlets of spinach Growth inhibition of lettuce and Barnyard grass Murkholderia cenocepacia K56-2 Toxicity to Burkholderia multivorans		P. fluorescens P11	Inhibition of bean (<i>Phaseolus vulgaris</i> var. Saxa)			Piotrowska-Seget 1995
Reduction of bean (<i>Phaseolus vulgaris</i> cv. <i>Bonia</i>) and lettuce (<i>L. sativa</i> L. var. <i>Sativa cv.</i> Montana or Market Favourite) dry weight Reduction of aboveground biomass of <i>Echinochola crus-galli</i> Reduced the growth of Velvetleaf (<i>Abutilon theophrasi</i>) Induced necrosis on the rootlets of spinach Growth inhibition of lettuce and Barnyard grass , Barnyard grass , Tomotion of competitiveness and suppression of <i>Burkholderia cenocepacia</i> K56-2 Toxicity to <i>Burkholderia multivorans</i>		P. fluorescens A112	Inhibition of lettuce (<i>Lactuca sativa</i> L. cv. Salad Bowl and Montana) root elongation			Aström 1991
Reduction of aboveground biomass of <i>Echinochola crus-gali</i> <i>Echinochola crus-gali</i> Reduced the growth of Velvetleaf (<i>Abutilon theophrasi</i>) Induced necrosis on the rootlets of spinach Growth inhibition of lettuce and Barnyard grass and suppression of <i>Burkholderia cenocepacia</i> K56–2 Toxicity to <i>Burkholderia</i> <i>multivorans</i>		P. fluorescens S241	Reduction of bean (<i>Phaseolus vulgaris</i> cv. <i>Bonita</i>) and lettuce (<i>L. sativa</i> L. var. <i>Sativa</i> cv. Montana or Market Favourite) drv weight			Alström and Burns 1989
Reduced the growth of Velvetleaf (<i>Abutilon theophrasi</i>) Induced necrosis on the rootlets of spinach Growth inhibition of lettuce and Barnyard grass and suppression of <i>Burkholderia cenocepacia</i> K56-2 Toxicity to <i>Burkholderia</i> <i>multivorans</i>		Pseudomonas kilonensis/ brassicancearum	Reduction of aboveground biomass of <i>Echinochola crus-ealli</i>			Zeller <i>et al.</i> 2007
Induced nerrosis on the rootlets of spinach Growth inhibition of lettuce and Barnyard grass and suppression of <i>Burkholderia cenocepacia</i> K56–2 Toxicity to <i>Burkholderia</i> <i>multivorans</i>		Pseudomonas putida ATH1R1/9, Acidovorax delafieldii ATH2-2RS/1	Reduced the growth of Velvetleaf (Abutilon theorhyrasti)			Owen and Zdor 2001
Growth inhibition of lettuce and Barnyard grass and suppression of <i>Burkholderia cenocepacia</i> K56–2 Toxicity to <i>Burkholderia</i> <i>multivorans</i>		P. fluorescens CC13	Induced necrosis on the rootlets of spinach			De Bellis and Ercolani 2001
isolates Promotion of competitiveness and suppression of <i>Burkholderia cenocepacia</i> K56–2 Toxicity to <i>Burkholderia</i> <i>multivorans</i>		32% of 2000 tested isolates including Pseudomonas sp. (strains 42, 74, 473), P fluorescens (strains 297, 126, 672), P annoinocal 136.	Growth inhibition of lettuce and Barnyard grass			Kremer and Souissi 2001
Toxicity to Burkholderia multivorans		P. aeruginosa isolates			Promotion of competitiveness and suppression of Burkholderia cenocepacia K56-2	Smalley et al. 2015
		P. aeruginosa			Toxicity to Burkholderia multivorans	Bernier et al. 2016

Compound class/ inorganic volatile	Emitter	Receiver: Plant	Receiver: Fungi	Receiver: Bacteria	Reference
	Pseudomonas sp. LBUM300			Repression of growth of Clavibacter michiganensis subsp. michiganensis	Lanteigne <i>et al.</i> 2012
	Pseudomonas corrugata		Antagonize growth of Gaeumannomyces graminis var tritici		Ross and Ryder 1994
	P. chlororaphis PA23		val. tratet Inhibition of <i>Sclerotinia</i> sclerotiorum		Athukorala <i>et al.</i> 2010
	P. protegens CHA0		Suppression of Thielaviopsis basicola		Ahl et al. 1986, Keel et al. 1989 Voisard et al. 1980
	P. protegens CHA0		Inhibition of vegetative growth of Magnaporthe		Spence et al. 2014
	P. fluorescens In5		oryzae Inhibition of growth of hyphae of <i>Rhizoctonia solani</i> and <i>Pythium</i>		Michelsen and Stougaard 2012
	P. putida BK861 (HCN overproducing strain)		upnanaermaan Suppression of <i>Septoria tritici</i> and <i>Puccinia recondita</i> f. sp. tritici		Flaishman <i>et al.</i> 1996
Ammonia	<i>B. subtilis</i> UB1 (strain has not been characterized)		Inhibition of <i>Neurospora</i> <i>crassa</i> strains	Stimulation of growth of <i>B. subtilis</i> UB2 (strain has not been characterized)	Ryan and Schneider 1947
	microbial degradation (bacteria not determined)		Increased mycelial growth and melanization of <i>R. solani</i> strains R118–11, R182	×	Lewis 1976
	S. plymuthica 4Rx13 Serratia odorifera 4Rx13, S. plymuthica HRO-C48, S. plymuthica 3Re4–18, P. fluorescens L13–6-12, P. fluorescens 3Re2–7, B. subtilis B2g. Stenotrophomonus maltophila R3089, Stenotrophomonus rhizophila P69, Stenotrophomonus epidermidis 2P3-18a	Inhibition of A. <i>thaliana</i> Inhibition of A. <i>thaliana</i>			Kai <i>et al.</i> 2010 Weise <i>et al.</i> 2013
	Bacillus cereus YMF3 00019, Bacillus amyloliquefaciens YMF3 00061, Proteus penneri YMF3 00016, Staphylococcus saprophyticus YMF3 00594, Pseudochrobactrum asaccharolyticum YMF3 00201, Proteus vulgaris YMF3 00140, Leucobacter benerotary VMF3 00170, D. asurcinoso		Induction of trap formation in Arthrobotrys oligospora YMF1 01883		Su <i>et al.</i> 2016

(Continues)

Compound class/ inorganic volatile	Emitter	Receiver: Plant	Receiver: Fungi	Receiver: Bacteria	Reference
	YMF3 00188, Alcaligenes faecalis YMF3 00172, Providencia rettgeri YMF3 00150, Brevibacterium epidermidis YMF3 00155 B. subitlis, Bacillus licheniformis, Micrococcus luteus, Escherichia coli E. coli K12		Modification of antibiotic resistance in E. coli BL21, P. aeruginosa, Staphylococcus aureus, B. subtilis	Induction of biofilm formation in <i>B. licheniformis</i>	Nijland and Burgess 2010 Bernier <i>et al.</i> 2011
CO ₂	S. plymuthica 4Rx13 S. plymuthica 4Rx13	Promoted the growth of A. thaliana Promoted the growth of Physcomitrella patens			Kai and Piechulla 2009 Kai and Piechulla 2010
H_2S	Sulfate reducing bacteria			Direct and reversible toxicity effect on sulfate-reducing bacteria	Reis et al. 1992
	Bacillus anthracis, P. aeruginosa, S. aureus, and E. coli			Mediate resistance to antibiotics	Shatalin <i>et al.</i> 2011
NO	Azospirillum brasilense Sp245	Mediate root branching of tomato (Solanum lycopersicum Mill.)			Molina-Favero et al. 2008
	B. anthracis			Lose their virulence and exhibit severely compromised survival	Shatalin <i>et al.</i> 2007
	B. subtilis			Protects bacterial cells from reactive oxygen species	Gusarov and Nudler 2005
	Streptomyces coelicolor			Regulation of production of antibiotics	Sasaki <i>et al.</i> 2016

Table 3. (Continued)

2058 B. Piechulla et al.

determine the extent of incorporation of bacterial CO_2 in plant growth in co-cultivations, two lines of experiments can be performed, (i) tracing isotope labelled CO_2 of bacteria in plants and (ii) online monitoring of CO_2 levels in respective growth containers. Nevertheless, it is still very challenging to differentiate between plant growth promoting effects caused by CO_2 with the effects caused by other volatile (organic) compounds.

Hydrogen cyanide

The best studied bacterial inorganic volatile is HCN released from the *Pseudomonas* strains *Pseudomonas protegens*, *Pseudomonas fluorescens*, *Pseudomonas aeruginosa*, *Pseudomonas chlororaphis*, *Pseudomonas corrugata* and *Pseudomonas putida*, *Chromobacterium violaceum*, *Rhizobium* strains and *Serratia plymuthica* IC14 (Castric 1981; Antoun *et al.* 1998; Blumer and Haas 2000; Blom *et al.* 2011b). In ~1/3 of research articles reporting on direct effects of bacterial volatiles on plant growth have either performed experiments with HCN or discussed a possible role of HCN to explain their observation (Tables 3 and S3). Plants, fungi and bacteria experience growth reduction, inhibitions or are killed by HCN. In one case, an improved competitiveness was observed.

Hydrogen cyanide derives from amino acid degradation, for example, glycine is oxidized to HCN by the hydrogen cyanide synthase (Laville et al. 1992). In case of some cyanobacteria, other amino acids (e.g. L-histidine) can be converted to HCN by L-amino acid oxidases (Vennesland et al. 1981). HCN interferes with the respiratory electron transport by inhibiting the cytochrome c oxidase. By this toxic activity bacterial hydrogen cvanide was shown to negatively influence directly the growth of different plants, for example, Arabidopsis, potato, wild radish, subterranean clover, beans, lettuce, spinach and Barnyard grass (Bakker and Schippers 1987; Kremer and Souissi 2001; De Bellis and Ercolani 2001; Flores-Vargas and O'Hara 2006; Rudrappa et al. 2008; Blom et al. 2011b). Besides these deleterious effects on plants, bacterial HCN was also found to suppress the growth of various fungi including Gaeumannomyces var. tritici, Sclerotinia sclerotiorum, Thielavopsis basicola, Magnaporthe oryzae, Rhizoctonia solani and Septoria tritici and the oomycete Phytium aphanidermatum (Ross and Ryder 1994; Athukorala et al. 2010; Ahl et al. 1986; Michelsen and Stougaard 2012; Spence et al. 2014). The inhibition of phytopathogenic fungi was correlated with plant growth promotions, and subsequently, HCN producer strains seemed to be very attractive biocontrol agents (Voisard et al. 1989). A very recent study, however, showed in vitro that rhizobacterial HCN did not correlate with the biocontrol effect but instead acted via sequestration of metal ions and indirectly caused an increase of phosphate availability (Rijavec and Lapanje 2016).

It was further demonstrated that bacterial HCN influenced the competiveness of bacterial strains in microbial communities. By killing and suppression, the HCN producer dominated co-cultures of certain bacteria (Smalley *et al.* 2015; Bernier *et al.* 2016). Although this was only tested for human associated bacteria, it is very likely that this principle can also play a role in plant-associated bacterial communities and consequently indirectly influences plant growth. Initial results that support this assumption are presented by Lanteigne *et al.* (2012) who showed that *in planta*, the *Pseudomonas* strain LBUM300 significantly reduced the disease development of bacterial canker of tomato by growth inhibition of *Clavibacter michiganensis* subsp. *michiganensis* in the rhizospheric population.

Ammonia

Ammonia is a nitrogen-containing gas produced by bacteria via degradation of amino acids (Hills 1940), by nitrite ammonification (Simon 2002), by urease-mediated hydrolytic degradation of urea (Kleiner *et al.* 1998) and by decarboxylation of amino acids (Özugul and Özugul 2007). Plants can only tolerate low levels (less than 0.1 mmol) of ammonia, because accumulation of ammonia leads to chlorosis in leaves, lowered root/shoot ratios, reduced mycorrhizal associations and inhibited seed germination and seedling establishment (Britto and Kronzucker 2002).

The role that ammonia might play in bacterial-plant interactions (Table 3) is still poorly understood and not often considered or investigated (Table S3). Kai et al. (2010) and Weise et al. (2013) clearly demonstrated that ammonia as a component of the bacterial volatile mixture led, via alkalization of the growth medium, to drastic phytotoxic effects on A. thaliana. This negative effect was mostly observed when bacterial isolates were grown on peptide-rich medium suggesting that degradation of amino acids was the source of ammonia formation. Because amino acids are typical root exudates, it is assumed that rhizobacteria metabolize these amino acids in their natural habitat generating ammonia and therewith affecting plant roots. In addition, indirect effects of bacterial ammonia on plant growth by influencing phytopathogens have to be considered. In a very early experiment by Ryan and Schneider (1947), it was shown that ammonia emitted from Bacillus subtilis UB1 inhibited the growth of the fungus Neurospora crassa. In contrast, ammonia as main volatile degradation product of decomposing plant tissue increased the mycelial growth of Rhizoctonia solani strains by supplying an additional nitrogen source and inducing melanization by raising the medium pH (Lewis 1976). Besides these effects, ammonia was also described to influence bacterial growth. Ammonia emitted from B. subtilis, B. licheniformis, Micrococcus luteus and E. coli induced biofilm formation in B. licheniformis (Nijland and Burgess 2010). Using E. coli K12 as a model organism, Bernier et al. (2011) demonstrated that exposure to ammonia increased resistance to tetracycline in E. coli BL21, P. aeruginosa, Staphylococcus aureus and B. subtilis. Similarly, the ampicillin-sensitive strains Serratia rubidaea and Serratia marcescens grew unhindered on ampicillin-containing media when exposed to bacterial volatiles (Čepl et al. 2014). However, Čepl and coworkers did not relate this effect to an increased resistance of the bacterial strains but rather to an inactivation of ampicillin owing to the alkalized pH of the medium. While the ability to form biofilms is an important parameter for bacterial strains to colonize plant roots, an increased resistance or inactivation of antibiotics can shape bacterial communities in different plant habitats. In order to thoroughly investigate ammonia-mediated direct or indirect interferences between

bacteria and plants as well as the relevance in interorganismic ecology, more research has to consider ammonia as a constituent of the bacterial volatile cocktail.

Hydrogen sulfide

Hydrogen sulfide (H_2S) is an inorganic gaseous molecule that is discussed as a phytotoxic agent causing detrimental effects in plant tissues but also as a signalling compound (Lisjak et al. 2013). Similar to HCN toxicity, hydrogen sulfide inhibits cytochrome c oxidase (Nicolls and Kim 1982; Dorman et al. 2002). Detrimental effects include the inhibition of oxygen release and phosphorous uptake in rice seedlings (Joshi et al. 1975) and lesions on leaves, defoliation and reduced growth of other plants, for example, Medicago, lettuce, grapes, sugar beets, pine and fir (Thompson and Kats 1978). These toxic effects of H₂S emerged at high concentrations (ppm range). Because most likely such high levels are not emitted under natural conditions, H₂S was recently considered in planta to be a signalling compound (Lisjak et al. 2013), playing a role in stomatal apertures and improvement of drought resistance (Garcia-Mata and Lamattina 2010; Jin et al. 2011), controlling root system development (Jia et al. 2015), altering enzyme activities and influencing NO and H₂O₂ metabolism (Lisjak et al. 2013). Thompson and Kats (1978) even showed that low concentrations of H₂S positively affect the growth of Medicago, lettuce and sugar beets. Furthermore, the exposition of roots or seeds of pea and bean plants to very low concentrations of H₂S led to an increased biomass and higher crop yield (Dooley et al. 2013). Beside direct effects on plant growth H₂S can also act indirectly by inhibition of fungal pathogens, for example, Rhizopus nigricans, Mucor rouxianus, Geotrichum candidum, Aspergillus niger and Penicillium italicum and thereby reduce fungal infections or post-harvest decay, respectively (Tang et al. 2014; Fu et al. 2014).

Plants are themselves H₂S emitters (Wilson et al. 1978; Winner et al. 1981; Sekiya et al. 1982; Rennenberg 1983, 1984; Rennenberg et al. 1990) and are therefore prominent sources regarding H₂S-mediated effects in plants. Although it is well known that bacteria produce hydrogen sulfide either from cysteine (Shatalin et al. 2011; Luhachack and Nudler 2014) or via sulfate reduction (sulfate-reducing bacteria, see review Barton et al. 2014), the role of bacterial derived hydrogen sulfide in plant growth development is so far not understood. Because there is accumulating evidence that H₂S released from bacteria play a role in homeostasis of the circulatory systems in mammals (Tomasova et al. 2016), it is most likely that also bacteria can regulate developmental processes in plants via H₂S emission. H₂S is rarely considered as putative component of bacterial volatile mixtures that directly influence plant growth (Table 3). So far, only two of 32 articles discussed a potential role of bacterial released H₂S as bioaction component in the volatile mixtures (Groenhagen et al. 2013; Delaplace et al. 2015), while Shatalin et al. (2011) demonstrated that a suppressed H₂S production by bacteria led to a higher sensitivity of bacterial pathogens to a multitude of antibiotics. Furthermore, Reis et al. (1992) found that hydrogen sulfide produced from sulfate reduction caused negative, direct and reversible

effects on sulfate-reducing bacteria. The increase of antibiotic sensitivity and direct toxicity due to bacterial H_2S might play important roles in establishing and maintaining bacterial communities on plant bacteria interfaces. H_2S has also be shown to inhibit fungal phytopathogens (*R. nigricans, M. rouxianus* and *G. candidum*) and to reduce fungal infections of sweet potato when potato slices were H_2S fumigated (Hu *et al.* 2014). Thus, it is also conceivable that bacterial H_2S indirectly promotes plant growth by antagonizing fungal phytopathogens.

Nitric oxide

Nitric oxide (NO) is a nitrogen-containing gaseous lipophilic highly stable free radical (half-life from seconds to minutes) that can thus freely and easily diffuse over several cell layers or longer distances (Stöhr and Ullrich 2002). These characteristics enable NO as perfect signalling molecule in plants but also bacteria and animals (Stöhr and Ullrich 2002). In plants, via metal nitrosylation, S-nitrosylation and tyrosine nitration, NO influences physiological key processes including growth and development, seed dormancy/germination, photosynthesis, flowering and stomatal movement (see reviews Besson-Bard et al. 2008; Koul et al. 2014). Furthermore, NO can also affect the growth of bacteria by manipulating their antibiotic resistance, promoting their antibiotic production, representing a developmental regulatory element and/or leading to an adaption to oxidative stress; all these features can indirectly influence the interference between bacteria and plants (Table 3) (Gusarov and Nudler 2005; Gusarov et al. 2008; Chater 2016; Sasaki et al. 2016). For instance, low concentrations of NO lead to dispersal of biofilm, increased cell motility or biofilm enhancement, features, which play an important role in plant root colonization (Barraud et al. 2009; Liu et al. 2012; Arruebarrena Di Palma et al. 2013; Henares et al. 2013).

Although a broad range of bacteria can produce NO via nitrification, denitrification (Firestone and Davidson 1989) and nitric oxide synthesis using arginine as the substrate (Chen and Rosazza 1994), research concerning the direct or indirect impact of bacterial NO on plant growth and development is still in its infancy (Table 3). One example is the plant growth promoting bacteria Azospirillum brasilense, which modulates lateral and adventitious root formation of tomato through NO emission (Molina-Favero et al. 2008). Zamioudis et al. (2015) reported that plants exposed to bacterial volatiles accumulated NO in the maturation zone and the root tip, while Cho et al. (2008) found NO to be present in guard cells of A. thaliana. Both authors conclude that this NO is plant-derived; however, NO might also be produced by plant-associated bacteria and diffused into the respective plant tissues. The emission of NO can be measured using mid-infrared absorption-based detection technique (Cristescu et al. 2008). Real-time monitoring using this absorption-based technique revealed that S. plymuthica 4Rx13 did not emit NO during growth suggesting that volatile-mediated effects of S. plymuthica 4Rx13 on plant growth were not based on NO emission (Kai et al. 2010). In order to clarify the presence of NO in bacterial headspaces and in turn to elucidate a putative role in plant growth and

development, the analysis of bacterial NO emission or NO scavenging experiments should be routinely performed.

CRITICAL ISSUES

This survey demonstrates clearly that the application of discrete bioactive mVOCs is a helpful tool to study and decipher the underlying cellular and molecular reactions and mechanism occurring in mVOC-mediated interactions. Understanding those will be a prerequisite for the development of strategies for applying mVOCs in plant and human health in the future. To be sustainably successful, it will be indispensible to explore mVOC effects under 'natural simulating conditions' in the lab and to define the important parameters that influence mVOC synthesis and emission, such as nutrient supply for the microorganisms, temperature and multifaceted environmental cues. Another challenge for the future is to determine the volatile production capacities of the microorganisms living in single or multi-species communities, during biofilm formation or colonization of habitats and so on, because concentrations and doses matter in applied research experiments dealing with discrete mVOCs or defined mVOC mixtures. Because microorganisms continuously synthesize or release mVOCs in a growthdependent manner, laboratory experiments also need to mimic and simulate these emission profiles. This could be relevant because, for example, slow emission of a compound might initiate adaptation processes in the receiving plant, which subsequently results in plants that, for example, can cope with higher mVOC concentrations or need higher levels of the mVOCs to elevate their defence or resistance reactions.

CONCLUDING REMARKS

In the past, microorganisms have demonstrated their metabolic potential by producing extraordinary compounds with bioactivity. Many of these compounds (e.g. antibiotics) are urgently needed and applied to sustain and improve the health of humans, animals and plants. However, small volatile metabolites of microbes have been overlooked in the past. Since up to now, the volatilomes of only ~600 microbes have been investigated, the high potential becomes apparent considering the large number of microbial species existing on Earth. Parnell et al. (2016) recently argued that '... microbes will certainly play a role in revolutionizing agriculture over the next several decades to help to meet the demands of a growing population' and '... the application of microbial products is now considered a valuable addition to precision agriculture'. As carved out in this review, the potential of mVOCs cannot be neglected anymore but rather play key roles in plant growth promotions and developments, and mVOC-mediated biocontrol will become more important in the future as more bioactive compounds are discovered (Fig. 2). Elucidation of novel structures of volatile natural products and determination of the specific molecular targets of mVOCs will be the prerequisite for the application of mVOCs in greenhouses and field trials. As the efficacy of the laboratory experiments often does not translate into field success, a challenge of the future is also to integrate mVOCs or mVOC producers appropriately.

Promising field trials were demonstrated by Choi *et al.* (2014), who successfully triggered induced resistance in pepper by the application of 3-pentanol, and in the VALORAM project (http://valoram.ucc.ie), *Pseudomonas* sp., *Bacillus* spp., *Paenibacillus* sp. increased the yield of potato in Bolivia, Peru and Equador (Velivelli *et al.* 2015).

REFERENCES

- Ahl P., Voisard C. & Défago G. (1986) Iron bound-siderophores, cyanic acid, and antibiotics involved in suppression of *Thielaviopsis basicola* by a *Pseudomonas fluorescens* strain. *Phytopathology* **116**, 121–134.
- Ambika Manirajan B., Ratering S., Rusch V., Schwiertz A., Geissler-Plaum R., Cardinale M. & Schnell S. (2016) Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. *Environmental Microbiology* 18, 5161–5174.
- Annan N.T., Poll L., Sefa-Dedeh S., Plahar W.A. & Jakobsen M. (2003) Volatile compounds produced by *Lactobacillus fermentum*, *Saccharomyces cerevisiae* and *Candida krusei* in single starter culture fermentations of Ghanaian maize dough. *Journal Applied Microbiology* 94, 462–474.
- Antoun H., Beauchamp C.J., Goussard N., Chabot R. & Lalande R. (1998) Potential of *Rhizobium* and *Bradyrhizobium* species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (*Raphanus sativus* L.). *Plant* and Soil 204, 57–67.
- Arrebola E., Sivakumar D. & Korsten L. (2010) Effect of volatile compounds produced by *Bacillus* strains on postharvest decay in citrus. *Biological Control* 53, 122–128.
- Arruebarrena Di Palma A., Pereyra C.M., Moreno Ramirez L., Xiqui Vazquez M.L., Baca B.E., Pereyra M.A., Lamattina L. & Creus C.M. (2013) Denitrification-derived nitric oxide modulates biofilm formation in *Azospirillum brasilense. FEMS Microbiology Letters* 338, 77–85.
- Alström S. & Burns R.G. (1989) Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. *Biology Fertility Soils* 7, 232–238.
- Aström B. (1991) Role of bacterial cyanide production in differential reaction of plant cultivars to deleterious rhizosphere pseudomonads. *Plant and Soil* 133, 93–100.
- Athukorala S.N.P., Fernando W.G., Rashid K.Y. & de Kievit T. (2010) The role of volatile and non-volatile antibiotics produced by *Pseudomonas chlororaphis* strain PA23 in its root colonization and control of *Sclerotinia sclerotiorum*. *Biocontrol Science and Technology* 20, 875–890.
- Bagci E. & Kocak A. (2008) Essential oil composition of the aerial parts of two Salvia L. (S. multicaulis Vahl. Enum and S. tricochlada Bentham) species from East Anatolian region (Turkey). International Journal Science Technology 3, 13–18.
- Bai Y., Müller D.B., Srinivas G., Garrido-Oter R., Potthoff E., Rott M., ... Schulze-Lefert P. (2015) Functional overlap of the *Arabidopsis* leaf and root microbiota. *Nature* 528, 364–369.
- Bakker A.W. & Schippers B. (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and *Pseudomonas* spp-mediated plant growth-stimulation. *Soil Biology Biochemistry* 19, 451–457.
- Bakker P.A., Berendsen R.L., Doornbos R.F., Wintermans P.C. & Pieterse C.M. (2013) The rhizosphere revisited: root microbiomics. *Frontiers Plant Science* 30, 165.
- Baldwin I.T. (2010) Plant Volatiles. Current Biology 20, 392-397.
- Baldwin I.T., Halitschke R., Paschold A., von Dahl C.C. & Preston C.A. (2006) Volatile signaling in plant-plant interactions: "talking trees" in the genomics era. *Science* **311**, 812–815.
- Bailly A., Groenhagen U., Schulz S., Geisler M., Eberl L. & Weisskopf L. (2014) The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. *Plant Journal* 80, 758–771.
- Banchio E., Xie X., Zhang H. & Paré P.W. (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J. Agr. Food Chemistry 57, 653–657.
- Barraud N., Schleheck D., Klebensberger J., Webb J.S., Hassett D.J., Rice S.A. & Kjelleberg S. (2009) Nitric oxide signaling in *Pseudomonas aeruginosa* biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. *Journal Bacteriology* 191, 7333–7342.
- Barton L.L., Fardeau M-L. & Fauque G.D. (2014) Hydrogen Sulfide: A Toxic Gas Produced by Dissimilatory Sulfate and Sulfur Reduction and Consumed by Microbial Oxidation. *Met. Ions Life Sci.* 14, 237–277.

- Becklin K.M., Walker S.M. II, Way D.A. & Ward J.K. (2016) CO₂ studies remain the key to understanding future world. *New Phytologist.* https://doi.org/10.1111/ nph.14336
- Berendsen R.L., Kalkhove S.I., Lugones L.G., Baars J.J., Wösten H.A. & Bakker P.A. (2013) Effects of the mushroom-volatile 1-octen-3-ol on dry bubble disease. *Applied Microbiology Biotechnology* 97, 5535–5543.
- Bernier S.P., Létoffé S., Delepierre M. & Ghigo J.-M. (2011) Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. *Molecular Microbiology* 81, 705–716.
- Bernier S.P., Workentine M.L., Li X., Magarvey N.A., O'Toole G.A. & Surette M.G. (2016) Cyanide Toxicity to *Burkholderia cenocepacia* Is Modulated by Polymicrobial Communities and Environmental Factors. *Frontiers Microbiology* 7, 725.
- Besson-Bard A., Pugin A. & Wendehenne D. (2008) New insights into nitric oxide signaling in plants. *Annual Review Plant Biology* 59, 21–39.
- Blazevic I. & Mastelic J. (2009) Glucosinolate degradation products and other bound and free volatiles in the leaves and roots of radish (*Raphanus sativus* L.). *Food Chemistry* **113**, 96–102.
- Blom D., Fabbri C., Connor E.C., Schiestl F.P., Klauser D.R., Boller T., Eberl L. & Weisskopf L. (2011a) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. *Environmental Microbiology* 13, 3047–3058.
- Blom D., Fabbri C., Eberl L. & Weisskopf L. (2011b) Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Applied Environmental Microbiology 77, 1000–1008.
- Blumer C. & Haas D. (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives Microbiology 173, 170–177.
- Briard B., Heddergott C. & Latgé J.P. (2016) Volatile compounds emitted by *Pseudomonas aeruginosa* stimulate growth of the fungal pathogen *Aspergillus fumigatus*. *MBio* 7, e00219.
- Britto D.T. & Kronzucker H.J. (2002) NH⁴₄ toxicity in higher plants: a critical review. *J. Plant Physiology* **159**, 567–584.
- Bulgarelli D., Rott M., Schlaeppi K., Ver Loren van Themaat E., Ahmadinejad N., Assenza F., ... Schulze-Lefert P. (2012) Revealing structure and assembly cues for *Arabidopsis* root-inhabiting bacterial microbiota. *Nature* 488, 91–95.
- Bulgarelli D., Schlaeppi K., Spaepen S., Ver Loren van Themaat E. & Schulze-Lefert P. (2013) Structure and functions of the bacterial microbiota of plants. *Annual Review Plant Biology* 64, 807–838.
- Buttery R., Turnbaugh J.G. & Ling L.C. (1988) Contribution of volatiles to rice aroma. *Journal Agricultural Food Chemistry* 36, 1006–1009.
- Cailleux A., Bouchara J.P., Daniel V., Chabasse D. & Allain P. (1992) Gas chromatography-mass spectrometry analysis of volatile organic compounds produced by some micromycetes. *Chromatographia* 34, 613–617.
- Castric P.A., Castric K.F. & Meganathan R. (1981) Factors influencing the termination of cyanogenesis in Pseudomonas aeruginosa. In *Cyanide in Biology* (eds Vennesland B., Conn E.E., Knowles C.J., Westley J. & Wissing F.) pp. 263–274. Academic Press, London
- Čepl J., Blahůšková A., Cvrčková F. & Markoš A. (2014) Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation. FEMS Microbiology Letters 354, 126–132.
- Cernava T., Aschenbrenner I.A., Grube M., Liebminger S. & Berg G. (2015) A novel assay for the detection of bioactive volatiles evaluated by screening of lichen-associated bacteria. *Frontiers Microbiology* 6, 398.
- Chater K.F. (2016) Recent advances in understanding *Streptomyces*. F1000Research 5, 2795.
- Chen Y. & Rosazza J.P.N. (1994) A bacterial nitric oxide synthase from a Nocardia species. Biochemical and Biophysical Research Communications 2, 1251–1258.
- Cheng X., Cordovez V., Etalo D.W., van der Voort M. & Raaijmakers J.M. (2016) Role of the GacS Sensor Kinase in the regulation of volatile production by plant- growth-promoting *Pseudomonas fluorescens* SBW25. *Front. Plant Science* 7, 1706.
- Chitarra G.S., Abee T., Rombouts F.M., Posthumus M.A. & Dijksterhuis J. (2004) Germination of *Penicillium paneum* conidia is regulated by 1-octen-3ol, a volatile self-inhibitor. *Applied Environmental Microbiology* 70, 2823–2829.
- Cho S.M., Kang B.R., Han S.H., Anderson A.J., Park J.Y., Lee Y.H., ... Kim Y.C. (2008) 2R, 3R-butanediol, a bacterial volatile produced by *Pseudomonas chlororaphis* O6, is involved in induction of systemic tolerance to drought in *Arabidopsis thaliana. Molecular Plant Microbe Interaction* 21, 1067–1075.
- Choi H.K., Song G.C., Yi H.S. & Ryu C.M. (2014) Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. *Journal Chemical Ecology* 40, 882–892.

- Chung J.H., Song G.C. & Ryu C.M. (2015) Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity. *Plant Molecular Biology* **90**, 677–687.
- Clawson B.J. & Young C.C. (1913) Preliminary report on the production of hydrocyanic acid by bacteria. *Journal Biological Chemistry* **15**, 419–422.
- Collignon R.M., Swift I.P., Zou Y., McElfresh J.S., Hanks L.M. & Millar J.G. (2016) The influence of host plant volatiles on the attraction of longhorn beetles to pheromones. *Journal Chemical Ecology* **42**, 215–229.
- Cristescu S.M., Persijn S.T., Te Lintel Hekkert S. & Harren F.J.M. (2008) Laser-based systems for trace gas detection in life sciences. *Applied Physics B* **92**, 343–349.
- D'Alessandro M., Erb M., Ton J., Brandenburg A., Karlen D., Zopfi J. & Turlings T.C. (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. *Plant Cell Environment* 37, 813–826.
- Davis T.S., Crippen T.L., Hofstetter R.W. & Tomberlin J.K. (2013) Microbial volatile emissions as insect semiochemicals. *Journal Chemical Ecology* 39, 840–859.
- Deasy W., Shepherd T., Alexander C.J., Birch A.N.E. & Evans K.A. (2016) Development and validation of a SPME-GC-MS method for in situ passive sampling of root volatiles from glasshouse-grown broccoli plants undergoing below-ground herbivory by larvae of cabbage root fly, *Delia radicum L. Phytochemical Analysis* 27, 375–393.
- De Bellis P. & Ercolani G.L. (2001) Growth interactions during bacterial colonization of seedling rootlets. *Applied Environmental Microbiolog* 67, 1945–1948.
- Delaplace P., Delory B.M., Baudson C., Mendaluk-Saunier de Cazenave M., Spaepen S., Varin S., Brostaux Y. & du Jardin P. (2015) Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass *Brachypodium distachyon* (L.) P. Beauv. *BMC Plant Biology* 15, 195.
- Delmotte N., Knief C., Chaffron S., Innerebner G., Roschitzki B., Schlapbach R., von Mering C. & Vorholt J.A. (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. *Proceedings National Academy Sciences USA* **106**, 16428–16433.
- Delory B.M., Delaplace P., Fauconnier M.-L. & du Jardin P. (2016) Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions? *Plant and Soil*. https://doi.org/10.1007/s11104-016-2823-3
- De Lucca A.J., Boue S.M., Carter-Wientjes C.H., Bland J.M., Bhatnagar D. & Cleveland T.E. (2010) Volatile profiles of toxigenic and non-toxigenic Aspergillus flavus using SPME for solid phase extraction. Annals Agricultural Environmental Medicine 17, 301–308.
- De Vrieze M., Pandey P., Bucheli T.D., Varadarajan A.R., Ahrens C.H., Weisskopf L. & Bailly A. (2015) Volatile organic compounds from native potato-associated *Pseudomonas* as potential anti-oomycete agents. *Frontiers Microbiology* 6, 1295.
- Diaz P., Senorans F.J., Reglero G. & Ibanez E. (2002) Truffle aroma analysis by headspace solid phase microextraction. *Journal Agricultural Food Chemistry* 50, 6468–6472.
- Dicke M. & Baldwin I.T. (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the 'cry for help'. *Trends Plant Science* 15, 167–175.
- Dickschat J.S. (2017) Fungal volatiles a survey from edible mushrooms to moulds. *Natural Product Reports* 34, 310–328.
- Ditengou F.A., Müller A., Rosenkranz M., Felten J., Lasok H. & Polle A. (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. *Nature Communications* **6**, 6279.
- Dooley F.D., Nair S.P. & Ward P.D. (2013) Increased growth and germination success in plants following hydrogen sulfide administration. *PloS One* 8, e62048.
- Dorman D.C., Moulin F.J., McManus B.E., Mahle K.C., James R.A. & Struve M.F. (2002) Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. *Toxicology Sciences* 65, 18–25.
- Dötterl S. & Schäffler I. (2007) Flower scent of floral oil-producing Lysimachia punctate as attractant for the oil-bee Marcopis fulvipes. Journal Chemical Ecology 33, 441–445.
- Eberl F., Hammerbacher A., Gershenzon J. & Unsicker S.B. (2017) Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore. *New Phytologist*. https://doi.org/10.1111/nph.14565
- Edwards J., Johnson C., Santos-Medellin C., Lurie E., Podishetty N.K., Bhatnagar S., Eisen J.A. & Sundaresan V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. *Proceedings National Academy Sciences USA* **112**, E911–E920.

- Effmert U., Kalderás J., Warnke R. & Piechulla B. (2012) Volatile mediated interactions between bacteria and fungi in the soil. *Journal Chemical Ecology* 38, 665–703.
- Eigenbrode S.D., Ding H., Shiel P. & Berger P.H. (2002) Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vecxtor, *Myzus persicae* (Homoptera: Aphididae). *Proceedings Royal Society B* 269, 455–460.
- Eilers F.I. & Sussman A.S. (1970) Conversion of furfural to furoic acid and furfuryl alcohol by *Neurospora* ascospores. *Planta* 94, 253–264.
- El-Hasan A. & Buchenauer H. (2009) Actions of 6-pentyl-alpha-pyrone in controlling seedling blight incited by *Fusarium moniliforme* and inducing defence responses in maize. *Journal of Phytopathology* **157**, 697–707.
- Emerson H.W., Cady H.P. & Bailey E.H.S. (1913) On the formation of hydrocyanic acid from proteins. *Journal Biological Chemistry* 15, 415–417.
- Ezquer I., Li J., Ovecka M., Baroja-Fernández E., Muñoz F.J., Montero M., Díaz de Cerio J. & Pozueta-Romero J. (2010) Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. *Plant Cell Physiology* **51**, 1674–1693.
- Farag M.A., Ryu C.M., Sumner L.W. & Pare P.W. (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induces systemic resistance in plants. *Phytochemistry* 67, 2262–2268.
- Farré-Armengol G., Filella I., Llusia J. & Peñuelas J. (2016) Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. *Trends Plant Science* 21, 854–860.
- Fernando W.G.D., Ramarathnam R., Krishnamoorthy A.S. & Savchuk S.C. (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. *Soil Biology Biochemistry* 37, 955–964.
- Fiddaman P.J. & Rossall S. (1994) Effect of substrate on the production of antifungal volatiles from *Bacillus subtilis*. Journal Applied Bacteriology 76, 395–405.
- Fincheira P., Venthur H., Mutis A., Parada M. & Quiroz A. (2016) Growth promotion of *Lactuca sativa* in response to volatile organic compounds emitted from diverse bacterial species. *Microbiological Research* 193, 39–47.
- Finidori-Logli V., Bagneres A.-G. & Clement J.-L. (1996) Role of plant Volatiles in the search for a Host by Parasitoid *Diglyphus isaea* (Hymenoptera: Eulophidae). *Journal Chemical Ecology* 22, 541–558.
- Firestone M.K. & Davidson E.A. (1989) Microbiological basis of NO and N₂O production and consumption in soil. In *Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere* (eds Andrea M.O. & Schimel D.S.), pp. 7–21. John Wiley & Sons, Chichester, United Kingdom.
- Fischer G., Schwalbe R., Möller M., Ostrowski R. & Dott W. (1999) Speciesspecific production of microbial volatile organic compounds (mVOC) by airborne fungi from compost facility. *Chemosphere* **39**, 795–810.
- Flaishman M.A., Eyal Z., Zilberstein A., Voisard C. & Haas D. (1996) Suppression of *Septoria tritici* blotch and leaf rust of wheat by recombinant cyanide-producing strains of *Pseudomonas putida*. *Molecular Plant-Microbe Interactions* 9, 642–645.
- Flores-Vargas R.D. & O'Hara G.W. (2006) Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. *Journal Applied Microbiology* 100, 946–954.
- Fu L.-H., Hu K.-D., Hu L.-Y., Li Y.-H., Hu L.-B., Yan H. & Liu Y.-S. (2014) An Antifungal Role of Hydrogen Sulfide on the Postharvest Pathogens Aspergillus niger and Penicillium italicum. PloS One 9, e104206.
- Galili G., Amir R. & Fernie A.R. (2016) The regulation of essential amino acid synthesis and accumulation in plants. *Annual Reviews Plant Biology* 67, 153–178.
- Garcia-Mata C. & Lamattina L. (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. *New Phytologist* 188, 977–984.
- Garnica-Vergara A., Barrera-Ortiz S., Muñoz-Parra E., Raya-González J., Méndez-Bravo A., Macías-Rodríguez L., ... López-Bucio J. (2015) The volatile 6-pentyl-2H-pyran-2-one from *Trichoderma atroviride* regulates *Arabidopsis thaliana* root morphogenesis via auxin signaling and ETHYLENE INSENSI-TIVE 2 functioning. *New Phytologist* **209**, 1496–1512.
- Geervliet J.B.F., Posthumus M.A., Vet L.E.M. & Dicke M. (1997) Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of *Pieris* Species. *Journal Chemical Ecology* 23, 2935–2954.
- Giorgio A., De Stradis A., Lo Cantore P. & Iacobellis N.S. (2015) Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on *Sclerotinia sclerotiorum*. *Frontiers Microbiology* **6**, 1056.
- Goeminne P.C., Vandendriessche T., Van Eldere J., Nicolai B.M., Hertog M.L.A.T.M. & Dupont L.J. (2012) Detection of *Pseudomonas aeruginosa* in sputum headspace through volatile organic compound analysis. *Respiratory Research* **13**, 87.
- © 2017 John Wiley & Sons Ltd, Plant, Cell and Environment, 40, 2042–2067

- Gong A.D., Li H.P., Shen L., Zhang J.B., Wu A.B., He W.-J., ... Liao Y.C. (2015) The Shewanella algae strain YM8 produces volatiles with strong inhibition activity against Aspergillus pathogens and aflatoxins. Frontiers Microbiology 6, 1091.
- Gopinath S., Kumaran K.S. & Sundararaman M. (2015) A new initiative in micropropagation: airborne bacterial volatiles modulate organogenesis and antioxidant activity in tobacco (*Nicotiana tabacum* L.) callus. *In Vitro Celluar Development Biology Plant* 51, 5146.
- Groenhagen U., Baumgartner R., Bailly A., Gardiner A., Eberl S. & Weisskopf L. (2013) Production of bioactive volatiles by different *Burkholderia ambifaria* strains. *Journal Chemical Ecology* **39**, 892–906.
- Gusarov I. & Nudler E. (2005) NO-mediated cytoprotection: Instant adaptation to oxidative stress in bacteria. *Proceedings National Academy Science USA* 102, 13855–13860.
- Gusarov I., Starodubtseva M., Wang Z.-Q., McQuade L., Lippard S.J., Stuehr D.J. & Nudler E. (2008) Bacterial nitric oxide synthases operate without a dedicated redox partner. *Journal Biological Chemistry* 283, 13140–13147.
- Gutiérrez-Luna F.M., López-Bucio J., Altamirano-Hernández J., Valencia-Cantero E., Reyes de la Cruz H. & Macías-Rodríguez L. (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in *Arabidopsis thaliana* through volatile organic compound emission. *Symbiosis* 51, 75–83.
- Guttman D.S., McHardy A.C. & Schulze-Lefert P. (2015) Microbial genomeenabled insights into plant-microorganism interactions. *Nature Review Genetics* 15, 797–813.
- Haidar R., Roudet J., Bonnard O., Dufour M.C., Corio-Costet M.F., Fert M., ... Fermaud M. (2016) Screening and modes of action of antagonistic bacteria to control the fungal pathogen *Phaeomoniella chlamydospora* involved in grapevine trunk diseases. *Microbiological Research* **192**, 172–184.
- Han S.H., Lee S.J., Moon J.H., Park K.H., Yang K.Y., Cho B.H., ... Kim Y.C. (2006) GacS-dependent production of 2R, 3R-butanediol by *Pseudomonas chlororaphis* O6 is a major determinant for eliciting systemic resistance against *Erwinia carotovora* but not against *Pseudomonas syringae* pv. *tabaci* in tobacco. *Molecular Plant Microbe Interaction* 19, 924–930.
- Hartmann A., Rothballer M. & Schmid M. (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. *Plant and Soil* 312, 7–14.
- Hartmann A. & Schikora A. (2012) Quorum sensing of bacteria and transkingdom interactions of N-acyl homoserine lactones with eukaryotes. *Journal Chemical Ecology* 38, 704–713.
- Hayashi M., Wada K. & Munakata K. (1981) New Nematicidal Metabolites from a Fungus, *Irpex lacteus. Agricultural Biological Chemistry* **45**, 1527.
- Heil M. & Silva Bueno J.C. (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. *Proceedings National Academy Sciences USA* 104, 5467–5472.
- Henares B.M., Xu Y. & Boon E.M. (2013) A nitric oxideresponsive quorum sensing circuit in Vibrio harveyi regulates flagella production and biofilm formation. *International Journal Molecular Science* 14, 16473–16484.
- Hills G.M. (1940) Ammonia production by pathogenic bacteria. *Biochemistry Journal* 34, 1057–1069.
- Hornby J.M., Jensen E.C., Lisec A.D., Tasto J.J., Jahnke B., Shoemaker R., ... Nickerson K.W. (2001) Quorum sensing in the dimorphic fungus *Candida albicans* is mediated by farnesol. *Applied Environmental Microbiology* 67, 2982–2992.
- Horton M.W., Bodenhausen N., Beilsmith K., Meng D., Muegge B.D., Subramanian S., ... Bergelson J. (2014) Genome-wide association study of *Arabidopsis thaliana* leaf microbial community. *Nature Communications* 5, 5320.
- Hu K.-D., Hu L.-Y., Li Y.-H., Liu Y.-S. & Zhang H. (2014) Hydrogen sulfide acts as a fungicide to alleviate senescence and decaying fresh-cut sweet potato. *Hortscience* 49, 938–943.
- Huang C.J., Tsay J.F., Chang S.Y., Yang H.P., Wu W.S. & Chen C.Y. (2012) Dimethyl disulfide is an induced systemic resistance elicitor produced by *Bacillus cereus* C1L. *Pest Management Science* 68, 1306–1310.
- Hunziker L., Bönisch D., Groenhagen U., Bailly A., Schulz S. & Weisskopf L. (2015) *Pseudomonas* strains naturally associated with potato plants produce volatiles with high potential for inhibition of *Phytophthora infestans*. *Applied Environmental Microbiology* **81**, 821–830.
- Hutchings M.L., Alpha-Cobb C.J., Hiller D.A., Berro J. & Strobel S.A. (2017) Mycofumigation through production of the volatile DNA-methylating agent *N*-methyl-*N*-nitrosoisobutyramide by fungi in the genus *Muscodor. Journal Biological Chemistry* 292, 7358–7371.
- Ichiki R.T., Kainoh Y., Kugimiya S., Takabayashi J. & Nakamura S. (2008) Attraction to herbivore-induced plant volatiles by the host-foraging parasitoid fly *Exorista japonica*. *Journal Chemical Ecology* **34**, 614–621.

Insam H. & Seewald M.S.A. (2010) Volatile organic compounds (VOCs) in soils. Biology Fertil Soils 46, 199–213.

- Jia H., Hu Y., Fan T. & Li J. (2015) Hydrogen sulfide modulates actin-dependent auxin transport via regulating ABPs results in changing of root development in Arabidopsis. *Science Reports* 5, 8251.
- Jin J., Tang C. & Sale P. (2015) The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. Annals Botany 116, 987–999.
- Jin Z., Shen J., Qiao Z., Yang G., Wang R. & Pei Y. (2011) Hydrogen sulfide improves drought resistance in *Arabidopsis thaliana*. *Biochemistry Biophysics Research Communication* **414**, 481–486.
- Jordan M.J., Lax V., Rota M.C., Loran S. & Sotomayor J.A. (2013) Effect of bioclimatic area on the essential oil composition and antibacterial activity of *Rosmarinus officinalis L. Food Control* 30, 463–468.
- Joshi M.M., Ibrahium I.K.A. & Hollis J.P. (1975) Hydrogen sulphide: effects on the physiology of rice plants and relation to straighthead disease. *Phytopathol*ogy 65, 1165–1170.
- Kai M., Crespo E., Cristescu S.M., Harren F.J., Francke W. & Piechulla B. (2010) Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Applied Microbiology Biotechnology 88, 965–976.
- Kai M., Effmert U. & Piechulla B. (2016) Bacterial-plant-interactions: approaches to unravel the biological function of bacterial volatiles in the rhizosphere. *Frontiers Microbiology* 9, 108.
- Kai M., Haustein M., Molina F., Petri A., Scholz B. & Piechulla B. (2009) Bacterial volatiles and their action potential. *Applied Microbiology Biotechnology* 81, 1001–1012.
- Kai M. & Piechulla B. (2009) Plant growth promotion due to rhizobacterial volatiles - an effect of CO₂? FEBS Letters 583, 3473–3477.
- Kai M. & Piechulla B. (2010) Impact of volatiles of the rhizobacteria Serratia odorifera on the moss Physcomitrella patens. Plant Signaling Behaviour 5, 444–446.
- Karmakar A., Mukherjee A. & Barik A. (2016) Floral volatiles with colour cues from two cucurbitaceous plants causing attraction of *Aulacophora foveicollis*. *Entomologia Experimentalis Applicata* **158**, 133–141.
- Kayode R.M.O. & Afolayan A.J. (2015) Cytotoxicity and effect of extraction methods on the chemical composition of essential oils of *Moringa oleifera* seeds. *Journal Zhejiang University-SCIENCE B (Biomedicine & Biotechnol*ogy) 16, 680–689.
- Keel C., Voisard C., Berling C.H., Kahr G. & Defago G. (1989) Iron Sufficiency, a Prerequisite for the Suppression of Tobacco Black Root Rotby *Pseudomonas fluorescens* Strain CHAO under Gnotobiotic Conditions. *Phytopathology* 79, 584–589.
- Kishimoto K., Matsui K., Ozawa R. & Takabayashi J. (2007) Volatile 1-octen-3-ol induces a defensive response in *Arabidopsis thaliana*. *Journal Genetic Plant Pathology* **73**, 35–37.
- Kiss M., Csoka M., Gyorfi J. & Korany K. (2011) Comparison of the fragrance constituents of *Tuber aestivum* and *Tuber brumale* gathered in Hungary. *Journal Applied Botany Food Quality* 84, 102–110.
- Kleiner D., Traglauer A. & Domm S. (1998) Does ammonia production by *Klebsiella* contribute to pathogenesis? *Bulletin Institute Pasteur* 96, 257–265.
- Knief C. (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. *Frontiers Plant Science* 5, 216.
- Knief C., Delmotte N., Chaffron S., Stark M., Innerebner G., Wassmann R., von Mering C. & Vorholt J.A. (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. *ISME Journal* 6, 1378–1390.
- Knudsen J.T., Eriksson R., Gershenzon J. & Ståhl B. (2006) Diversity and distribution of floral scent. *The Botanical Review* 72, 1–120.
- Korpi A., Järnberg J. & Pasanen A.-L. (2009) Microbial volatile organic compounds. Critical Reviews in Toxicology 39, 139–193.
- Kottb M., Gigolashvili T., Großkinsky D.K. & Piechulla B. (2015) Trichoderma volatiles effecting *Arabidopsis*: from inhibition to protection against phytopathogenic fungi. *Frontiers Microbiology* 29, 995.
- Koul V., Adholeya A. & Kochar M. (2014) Sphere of influence of indole acetic acid and nitric oxide in bacteria. *Journal Basic Microbiology* 55, 543–553.
- Kremer R.J. & Souissi T. (2001) Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. *Current Microbiology* 43, 182–186.
- Küntzel A., Fischer S., Bergmann A., Oertel P., Steffens M., Trefz P., ... Köhler H. (2016) Effects of biological and methodological factors on volatile organic compound patterns during cultural growth of *Mycobacterium avium* ssp. *paratuberculosis. Journal Breath Research* 10, 037103.
- Lanteigne C., Gadkar V.J., Wallon T., Novinscak A. & Filion M. (2012) Production of DAPG and HCN by *Pseudomonas* sp. LBUM300 Contributes to the

Biological Control of Bacterial Canker of Tomato. *Biological Control* 102, 967–973.

- Larsen T.O. (1998) Volatile flavour production by *Penicillium caseifulvum*. International Dairy Journal 8, 883–887.
- Laville J., Voisard C., Keel C., Maurhofer M., Défago G. & Haas D. (1992) Global control in *Pseudomonas fluorescens* mediating antibiotic synthesis and suppression of black root rot of tobacco. *Proceedings National Academy Sciences USA* 89, 1562–1566.
- Ledger T., Rojas S., Timmermann T., Pinedo I., Poupin M.J., Garrido T., ... Donoso R. (2016) Volatile-mediated effects predominate in *Paraburkholderia phytofirmans* growth promotion and salt stress tolerance of *Arabidpsis thaliana*. *Frontiers Microbiology*. https://doi.org/10.3389/fmicb.2016.01838
- Lee B., Farag M.A., Park H.B., Kloepper J.W., Lee S.H. & Ryu C.M. (2012) Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by *Paenibacillus polymyxa*. *PloS One* 7, e48744.
- Lee S., Hung R., Yap M. & Bennett J.W. (2015) Age matters: the effects of volatile organic compounds emitted by *Trichoderma atroviride* on plant growth. *Archives Microbiology* **197**, 723–727.
- Lee S.M., Oh J., Hurh B.-S., Jeong G.-H., Shin Y.-K. & Kim Y.-S. (2016) Volatile compounds produced by *Lactobacillus paracasei* during oat fermentation. *Journal Food Science* 81, 2915–2922.
- Lemfack M.C., Nickel J., Dunkel M., Preissner R. & Piechulla B. (2014) mVOC: a database of microbial volatiles. *Nucleic Acids Research* 42, 744–748.
- Lewis J.A. (1976) Production of Volatiles from decomposing plant tissue and effect of these volatiles on *Rhizoctonia solani* in culture. *Canadian Journal Microbiology* 22, 1300–1306.
- Li J., Ezquer I., Bahaji A., Montero M., Ovecka M., Baroja-Fernández E., ... Pozueta-Romero J. (2011) Microbial volatiles induced accumulation of exceptionally high levels of starch in *Arabidopsis* leaves is a process involving NTRC and starch synthases class III and IV. *Molecular Plant-Microbe Interactions* 24, 1165–1178.
- Li N., Alfiky A., Vaughan M.M. & Kang S. (2016) Stop and smell the fungi: Fungal volatile metabolites are overlooked signals involved in fungal interaction with plants. *Fungal Biology Reviews* **30**, 134–144.
- Lisjak M., Teklic T., Wilson I.D., Whiteman M. & Hancock J.T. (2013) Hydrogen sulfide: Environmental factor or signalling molecule? *Plant Cell Environment* 36, 1607–1616.
- Liu N., Xu Y., Hossain S., Huang N., Coursolle D., Gralnick J.A. & Boon E.M. (2012) Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in *Shewanella woodyi. Biochemistry* **51**, 2087–2099.
- Lou Y.-G., Ma B. & Cheng J.-A. (2005) Attraction of the parasitoid Anagrus nilaparvatae to rice volatiles induced by the rice brown planthopper Nilaparvata lugens. Journal Chemical Ecology 31, 2357–2372.
- Lu W. (2006) Studies on the degradation of nitrophenylazophenylamine dyes by the white rot fungus *Pleurotus ostreatus*. *Dissertation*.
- Luhachack L. & Nudler E. (2014) Bacterial gasotransmitters: an innate defense against antibiotics. *Current Opinion Microbiology* 21, 13–17.
- Lundberg D.S., Lebeis S.L., Paredes S.H., Yourstone S., Gehring J., Malfatti S., ... Dangl J.L. (2012) Defining the core *Arabidopsis thaliana* root microbiome. *Nature* 488, 86–90.
- Lo Cantore P., Giorgio A. & Iacobellis N.S. (2015) Bioactivity of volatile organic compounds produced by *Pseudomonas tolaasii*. *Frontiers Microbiology* 6, 1082.
- Mastelic J., Jerkovic I., Blazevic I., Radonic A. & Krstulovic L. (2008) Hydrodistillation–adsorption method for the isolation of water-soluble, nonsoluble and high volatile compounds from plant materials. *Talanta* 76, 885–891.
- Meldau D.G., Meldau S., Hoang L.H., Underberg S., Wünsche H. & Baldwin I.T. (2013) Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp. B55 promotes *Nicotiana attenuata* growth by enhancing sulfur nutrition. *Plant Cell* 25, 2731–2747.
- Mendes M.D., Trindade H., Figueiredo A.C., Barroso J.G., Fontinha S.S. & Pedro L.G. (2009) Volatile and molecular characterization of two Portuguese endemic species: *Angelica lignescens* and *Melanoselinum decipiens*. *Biochemical Systematics Ecology* 37, 98–105.
- Michelsen C.F. & Stougaard P. (2012) Hydrogen cyanide synthesis and antifungal activity of the biocontrol strain *Pseudomonas fluorescens* In5 from Greenland is highly dependent on growth medium. *Canadian Journal Microbiology* 58, 381–390.
- Minerdi D., Bossi S., Maffei M.E., Gullino M.L. & Garibaldi A. (2011) *Fusarium oxysporum* and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (mVOC) emission. *FEMS Microbiology Ecology* **76**, 342–351.

- Moayeri H.R.S., Ashouri A., Poll L. & Enkegaard A. (2007) Olfactory response of a predatory mirid to herbivore induced plant volatiles: multiple herbivory vs. single herbivory. *Journal Applied Entomology* **131**, 326–332.
- Molina-Favero C., Creus C.M., Simontacchi M., Puntarulo S. & Lamattina L. (2008) Aerobic nitric oxide production by *Azospirillum brasilense* Sp245 and its influence on root architecture in tomato. *Molecular Plant Microbe Interaction* 21, 1001–1009.
- Mota L., Figueiredo A.C., Pedro L.G., Barroso J.G. & Ascensao L. (2013) Glandular trichomes, histochemical localization of secretion, and essential oil composition in *Plectranthus grandidentatus* growing in Portugal. *Flavour and Fragrance Journal* 28, 393–401.
- Naznin H.A., Kiyohara D., Kimura M., Miyazawa M., Shimizu M. & Hyakumachi M. (2014) Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in *Arabidopsis thaliana*. *PloS One* 27, 9.
- Nemcovic M., Jakubíková L., Víden I. & Farkas V. (2008) Induction of conidiation by endogenous volatile compounds in *Trichoderma* spp. *FEMS Microbiological Letters* 284, 231–236.
- Nicolls P. & Kim J.K. (1982) Sulphide as an inhibitor and electron donor for the cytochrome c oxidase system. Canadian Journal Biochemistry 60, 613–623.
- Nijland R. & Burgess J.G. (2010) Bacterial olfaction. *Biotechnology Journal* 5, 974–977.
- Nishino S., Parada R.Y., Ichiyanagi T., Maekawa N., Shimomura N. & Otani H. (2013) 1-Phenyl-3-pentanone, a volatile compound from the edible mushroom *Mycoleptodonoides aitchisonii* active against some phytopathogenic fungi. *Journal of Phytopathology* 161, 515–521.
- Nosala S. & Miyazawa M. (2014) Characterization of volatile components and odor-active Compounds in the Oil of Edible Mushroom *Boletopsis leucomelas*. *Journal Oleo Science* 63, 577–583.
- Ohler V.G.A., Ferreira N.P., Souza A.G., Chiavelli L.U.R., Teixeira A.F., Santos W.D., ... Pomini A.M. (2016) Acyl-homoserine Lactone from Saccharum × officinarum with Stereochemistry-dependent growth regulatory activity. *Journal Natural Products* **79**, 1316–1321.
- Orozco-Mosqueda M.C., Velázquez-Becerra C., Macías-Rodríguez L.I., Santoyo G., Flores-Cortez I., Alfaro-Cuevas R. & Valencia-Cantero E. (2013) Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (strategy I plant) in vitro via dimethylhexadecylamine emission. Plant and Soil 362, 51–66.
- Owen A. & Zdor R. (2001) Effect of cyanogenic rhizobacteria on the growth of velvetleaf (*Abutilon theophrasti*) and corn (*Zea mays*) in autoclaved soil and the in⁻uence of supplemental glycine. *Soil Biology Biochemistry* **33**, 801–809.
- Özugul F. & Özugul Y. (2007) The ability of biogenic amines and ammonia production by single bacterial cultures. *European Food Research Technology* 225, 385–394.
- Pala-Paul J., Perez-Alonso M.J., Velasco-Negueruela A. & Sanz J. (2002) Essential oil composition of *Schizogyne glaberrima* DC, a species endemic to the Canary Islands. *Flavour and Fragrance Journal* 17, 13–14.
- Park Y.-S., Dutta S., Ann M. & Raaijmakers J.M. (2015) Promotion of plant growth by *Pseudomonas fluorescens* strain SS101 via novel volatile organic compounds. *Biochemical Biophysical Resarch Communications* 461, 361–365.
- Parnell J.J., Berka R., Young H.A., Sturino J.M., Kang Y., Barnhart D.M. & DiLeo M.V. (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. *Frontiers Plant Science* 4, 1110.
- Pasanen P., Korpi A., Kalliokoski P. & Pasanen A.-L. (1997) Growth and volatile metabolite production of *Aspergillus versicolor* in house dust. *Environmental International* 23, 425–432.
- Patt J.M., French J.C., Schal C., Lech J. & Hartmann T.G. (1995) The pollination biology of tuckahoe, *Peltandra virginica* (Araceae). *American Journal Botany* 82, 130–1240.
- Peñuelas J., Asensio D., Tholl D., Wenke K., Rosenkranz M., Piechulla B. & Schnitzler J.P. (2014) Biogenic volatile emissions from the soil. *Plant Cell Envi*ronment **37**, 1866–1891.
- Perez Gutierrez R.M. & Perez R.L. (2004) Raphanus sativus (Radish): Their chemistry and biology. Scientific World Journal 4, 811–837.
- Philippot L., Raaijmakers J.M., Lemanceau P. & van der Putten W.H. (2013) Going back to the roots: The microbial ecology of the rhizosphere. *Nature Review Microbiology* 11, 789–799.
- Piechulla B. & Lemfack C. (2016) Microbial volatiles and their biotechnological applications. In *Plant Specialized Metabolism: Genomics, Biochemistry and Biological Function* (eds Arimura G. & Maffei M.), pp. 239–256. CRC Press, Boca Raton.
- Piechulla B. & Schnitzler J.P. (2016) Circumvent CO₂ effects in volatile-based microbe-plant interactions. *Trends Plant Science* 21, 541–543.
- Piotrowska-Seget Z. (1995) The effect of cyanogenic strains of *Pseudomonas fluorescens* on plant growth. *Acta Microbiologica Polonica* **44**, 161–170.
- © 2017 John Wiley & Sons Ltd, Plant, Cell and Environment, 40, 2042–2067

- Popova A.A., Koksharova O.A., Lipasova V.A., Zaitseva J.V., Katkova-Zhukotskaya O.A., Eremina S.I., ... Khmel I.A. (2014) Inhibitory and toxic effects of volatiles emitted by strains of *Pseudomonas* and *Serratia* on growth and survival of selected microorganisms, *Caenorhabditis elegans* and *Drosophila melanogaster*. *BioMed Research International* 125704.
- Porter E.A., Griffiths D.W., Robertson G.W. & Sexton R. (1999) Floral volatiles of the sweet pea *Lathyrus odoratus*. *Phytochemistry* 51, 211–214.
- Prieto-Benitez S., Dötterl S. & Gimenez-Benavides L. (2015) Diel variation in flower scent reveals poor consistency of diurnal and nocturnal pollination syndromes in sileneae. *Journal Chemical Ecology* **41**, 1095–1104.
- Rangel-Sanchez G., Castro-Mercado E. & Garcia-Pineda E. (2014) Avocado roots treated with salicylic acid produce phenol-2,4-bis (1,1-dimethylethyl), a compound with antifungal activity. *Journal of Plant Physiology* 171, 189–198.
- Rasmann S., Köllner T.G., Degenhardt J., Hiltpold I., Toepfer S., Kuhlmann U., ... Turlings T.C. (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. *Nature* 434, 732–737.
- Reis M.A.M., Almeida J.S., Lemos P.C. & Carrondo M.J.T. (1992) Effect of hydrogen sulfide on growth of sulfate reducing bacteria. *Biotechnology and Bioengineering* 40, 593–600.
- Rennenberg H. (1983) Role of O-acetylserine in hydrogen sulfide emission from pumpkin leaves in response to sulfate. *Plant Physiology* 73, 560–565.
- Rennenberg H. (1984) The fate of excess sulfur in higher plants. Annual Review Plant Physiology 35, 121–153.
- Rennenberg H., Huber B., Schröder P., Stahl K., Haunold W., Georgii H.W., Slovik S. & Pfanz H. (1990) Emission of volatile sulfur compounds from spruce trees. *Plant Physiology* 92, 560–564.
- Rijavec T. & Lapanje A. (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. *Frontiers Microbiology* 7, 1785.
- Ritpitakphong U., Falquet L., Vimoltust A., Berger A., Métraux J.P. & L'Haridon F. (2016) The microbiome of the leaf surface of *Arabidopsis* protects against a fungal pathogen. *New Phytologist* **210**, 1033–1043.
- Robertson G.W., Griffiths D.W., MacFarlane Smith W. & Butcher R.D. (1993) The application of thermal desorption-gas chromatography-mass spectrometry to the analyses of flower volatiles from five varieties of oilseed rape (*Brassica napus* spp. *oleifera*). *Phytochemical Analysis* 4, 152–157.
- Robinson P.M., McKee N.D., Thompson L.A.A., Harper D.B. & Hamilton J.T. G. (1989) Autoinhibition of germination and growth in *Geotrichum candidum*. *Mycology Research* 93: 214–222.
- Romano P. (1997) Metabolic characteristics of wine strains during spontaneous and inoculated fermentation. *Food Technology Biotechnology* 35, 255–260.
- Ross I.L. & Ryder M.H. (1994) Hydrogen cyanide production by a biocontrol strain of *Pseudomonas corrugate*: evidence that cyanide antagonizes the take-all fungus in vitro. In *Improving Plant Productivity with Rhizosphere Bacteria* (eds Ryder M. H., Stephens P.M. & Bowen G.D.), pp. 131–133. CSIRO, Adelaide.
- Rudrappa T., Splaine R.E., Biedrzycki M.L. & Bais H.P. (2008) Cyanogenic Pseudomonads Influence Multitrophic Interactions in the Rhizosphere. *PloS One* 3, e2073.
- Rudrappa T., Biedrzycki M.L., Kunjeti S.G., Donofrio N.M., Czymmek K.J., Paré P.W. & Bais H.P. (2010) The rhizobacterial elicitor acetoin induces systemic resistance in *Arabidopsis thaliana*. *Communicative Integrative Biology* 3, 130–138.
- Ryan F.J. & Schneider L.K. (1947) The relation of the bacterial production of ammonia gas to the growth of other microorganisms. *Journal Bacteriology* 54, 209–211.
- Ryu C.M., Farag M.A., Hu C.-H., Reddy M.S., Kloepper J.W. & Paré P.W. (2004) Bacterial volatiles induce systemic resistance in *Arabidopsis*. *Plant Physiology* 134, 1017–1026.
- Ryu C.M., Farag M.A., Hu C.H., Reddy M.S., Wei H.X., Paré P.W. & Kloepper J.W. (2003) Bacterial volatiles promote growth in *Arabidopsis. Proceeding National Academy Sciences USA* 15, 4927–4932.
- Sánchez-Ortiz B.L., Sánchez-Fernández R.E., Duarte G., Lappe-Oliveras P. & Macías-Rubalcava M.L. (2016) Antifungal, anti-oomycete and phytotoxic effects of volatile organic compounds from the endophytic fungus *Xylaria* sp. strain PB3f3 isolated from *Haematoxylon brasiletto*. *Journal Applied Microbiology* **120**, 1313–1325.
- Sasaki Y., Oguchi H., Kobayashi T., Kusama S., Sugiura R., Moriya K., ... Shoun H. (2016) Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling. *Scientific Reports* 6, 22038.
- Savelieva E., Gustyleva L.K., Kessenikh E.D., Khlebnikova N.S., Leffingwell J., Gavrilova O.P. & Gagkaeva T.Y. (2016) Study of the vapor phase over *Fusarium* fungi cultured on various substrates. *Chemical Biodiversity* 13, 891–903.
- Schenkel D., Lemfack M.C., Piechulla B. & Splivallo R. (2015) A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. *Frontiers in Microbiology, Plant-Microbe Interactions* 6, 707.

- Schlaeppi K., Dombrowski N., Oter R.G., Ver Loren van Themaat E. & Schulze-Lefert P. (2014) Quantitative divergence of the bacterial root microbiota in *Arabidopsis thaliana* relatives. *Proceedings National Academy Sciences USA* 111, 585–592.
- Schmidt R., Etalo D.W., de Jager V., Gerards S., Zweers H., de Boer W. & Garbeva P. (2015) Microbial Small Talk: Volatiles in fungal-bacterial interactions. *Frontiers Microbiology* 5, 1495.
- Seifert R.M. & King A.D. Jr. (1982) Identification of some volatile constituents of Aspergillus clavatus. Journal Agricultural Food Chemistry 30, 786–790.
- Schulz S. & Dickschat J.S. (2007) Bacterial volatiles: the smell of small organisms. *Natural Product Reports* 24, 814–842.
- Sekiya J., Wilson L.G. & Filner P. (1982) Resistance to injury by sulfur dioxide: correlation with its reduction to, and emission of, hydrogen sulfide in cucurbitaceae. *Plant Physiology* **70**, 437–441.
- Shatalin K., Gusarov I., Avetissova E., Shatalina Y., McQuade L.E., Lippard S.J. & Nudler E. (2007) Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages. *Proceedings National Academy Sciences USA* 105, 1009–1013.
- Shatalin K., Shatalina E., Mironov A. & Nudler E. (2011) H₂S: a universal defense against antibiotics in bacteria. *Science* 334, 986–990.
- Shestivska V., Dryahina K., Nunvar J., Sovova K., Elhottova D., Nemec A., ... Spanel P. (2015) Quantitative analysis of volatile metabolites released in vitro by bacteria of the genus *Stenotrophomonas* for identification of breath biomarkers of respiratory infection in cystic fibrosis. *Journal Breath Research* 9, 027104.
- Shields M.S., Montgomery S.O., Chapman P.J., Cuskey S.M. & Pritchard P.H. (1989) Novel pathway of toluene catabolism in the trichloroethylenedegrading bacterium G4. *Applied Environmental Microbiology* 55, 1624–1629.
- Siddiquee S., Azad S.S., Bakar F.A., Naher L. & Kumar S.V. (2015) Separation and identification of hydrocarbons and other volatile compounds from cultures of *Aspergillus niger* by GC–MS using two different capillary columns and solvents. *Journal Saudi Chemical Society* 19, 243–256.
- Simon J. (2002) Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiology Review 26, 285–309.
- Smalley N.E., An D., Parsek M.R., Chandler J.R. & Dandekar A.A. (2015) Quorum sensing protects *Pseudomonas aeruginosa* against cheating by other species in a laboratory coculture model. *Journal Bacteriology* **197**, 3154–3159.
- Song G.C. & Ryu C.M. (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. *International Journal Molecular Science* 8, 9803–9819.
- Spence C., Alff E., Johnson C., Ramos C., Donofrio N., Sundaresan V. & Bais H. (2014) Natural rice rhizospheric microbes suppress rice blast infections. *BMC Plant Biology* 14, 130.
- Spencer M., Ryu C.-M., Yang K.-Y., Kim Y.C., Kloepper J.W. & Anderson A.J. (2003) Induced defence in tobacco by *Pseudomonas chlororaphis* strain O6 involves at least the ethylene pathway. *Physiology Molecular Plant Pathology* 63, 27–34.
- Splivallo R., Novero M., Bertea C.M., Bossi S. & Bonfante P. (2007) Truffle volatiles inhibit growth and induce an oxidative burst in *Arabidopsis thaliana*. *New Phytologist* 175, 417–424.
- Splivallo R., Fischer U., Göbel C., Feussner I. & Karlovsky P. (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. *Plant Physiology* **150**, 2018–2029.
- Steinebrunner F., Schiestl F.P. & Leuchtmann A. (2008) Ecological role of volatiles produced by Epichloë: differences in antifungal toxicity. *FEMS Microbiol*ogy Ecology 64, 307–316.
- Stöhr C. & Ullrich W.R. (2002) Generation and possible roles of NO in plant roots and their apoplastic space. *Journal Experimental Botany* 53, 2293–2303.
- Strobel G.A., Dirkse E., Sears J. & Markworth C. (2001) Volatile antimicrobials from *Muscodor albus*, a novel endophytic fungus. *Microbiology* 147, 2943–2950.
- Strobel G.A., Knighton B., Kluck K., Ren Y., Livinghouse T., Griffin M., ... Sears J. (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus *Gliocladium roseum* (NRRL 50072). *Microbiology* 154, 3319–3328.
- Su H.N., Xu Y.Y., Wang X., Zhang K.Q. & Li G.H. (2016) Induction of trap formation in nematode-trapping fungi by bacteria-released ammonia. *Letters Applied Microbiology* 62, 349–353.
- Swiegers J.H. & Pretorius I.S. (2007) Modulation of volatile sulfur compounds by wine yeast. Applied Microbiology Biotechnology 74, 954–960.
- Takabayashi J., Dicke M. & Posthumus M.A. (1991) Variation in composition of predator-attracting allelochemicals emitted by herbivore-infested plants: relative influence of plant and herbivore. *Chemoecology* 2, 1–6.

- Taskin H. (2013) Detection of volatile aroma compounds of Morchella by headspace gas chromatography mass spectrometry (HS-GC/MS). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41, 122–125.
- Tang J., Hu K.D., Hu L.Y., Li Y.H., Liu Y.S. & Zhang H. (2014) Hydrogen sulfide acts as a fungicide to alleviate senescence and decay in fresh-cut sweet potato. *Horticulture Science* 49, 938–943.
- Thompson C.R. & Kats G. (1978) Effects of Continuous H₂S Fumigation on Crop and Forest Plants. *Environment Science Technology* 12, 550–553.
- Tirillini B., Verdelli G., Paolocci F., Ciccioli P. & Frattoni M. (2000) The volatile organic compounds from the mycelium of *Tuber borchii* Vitt. *Phytochemistry* 55, 983–985.
- Toffano L., Fialho M.B. & Pascholati F. (2017) Potential of fumigation of orange fruits with volatile organic compounds produced by *Saccharomyces cerevisiae* to control citrus black spot disease at postharvest. *Biological Control* 108, 77–82.
- Tomasova L., Konopelski P. & Ufnal M. (2016) Gut bacteria and hydrogen sulfide: the new old players in circulatory system homeostasis. *Molecules* 21, 1558.
- Topal U., Sasaki M., Goto M. & Otles S. (2008) Chemical compositions and antioxidant properties of essential oils from nine species of Turkish plants obtained by supercritical carbon dioxide extraction and steam distillation. *International Journal Food Sciences Nutrition* 59, 619–634.
- Turner T.R., James E.K. & Poole P.S. (2013) The plant microbiome. *Genome Biology* 14, 209.
- Ul-Hassan S.R., Strobel G.A., Booth E., Knighton B., Floerchinger C. & Sears J. (2012) Modulation of volatile organic compound formation in the mycodieselproducing endophyte *Hypoxylon* sp. CI-4. *Microbiology* **158**, 465–473.
- Ulloa-Benitez A., Medina-Romero Y.M., Sanchez-Fernandez R.E., Lappe-Oliveras P., Roque-Flores G., Duarte Lisci G., ... Macias-Rubalcava M.L. (2016) Phytotoxic and antimicrobial activity of volatile and semi-volatile organic compounds from the endophyte *Hypoxylon anthochroum* strain Blaci isolated from *Bursera lancifolia* (Burseraceae). *Journal Applied Microbiology* **121**, 380–400.
- Vaishnav A., Kumari S., Jain S., Varma A., Tuteja N. & Choudhary D.K. (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. *Journal Basic Microbiology* 56, 1–15.
- Velazquez-Bererra C., Macias-Rodriguez L.I., Lopez-Bucio J., Altamirano-Hernandez J., Flores-Cortez I. & Valencia-Cantero E. (2011) A volatile organic compound analysis from *Arthrobacter agilis* identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and *Medicago sativa* morphogenesis in vitro. *Plant and Soil* 339, 329–340.
- Velivelli S.L., Kromann P., Lojan P., Rojas M., Franco J., Suarez J.P. & Prestwich B.D. (2015) Identification of mVOCs from Andean rhizobacteria and field evaluation of bacterial and mycorrhizal inoculants on growth of potato in its center of origin. *Microbial Ecology* 69, 652–667.
- Vennesland B., Pistorius E.K. & Gewitz H.S. (1981) HCN production by microalgae. In *Cyanide in Biology* (eds Vennesland B., Conn E.E., Knowles C.J., Westley J. & Wissing F.), pp. 349–362. Academic, London.
- Vespermann A., Kai M. & Piechulla B. (2007) Rhizobacterial volatiles affect the growth of fungi and *Arabidopsis thaliana*. *Applied Environmental Microbiology* 73, 5639–5641.
- Voisard C., Keel C., Haas D. & Défago G. (1989) Cyanide production by *Pseudo-monas fluorescens* helps suppress black root rot of tobacco under gnotobiotic conditions. *The EMBO Journal* 8, 361–358.
- Weise T., Kai M., Gummesson A., Troeger A., von Reuß S., Piepenborn S., ... Piechulla B. (2012) Volatile organic compounds produced by the phytopathogenic bacterium *Xanthomonas campestris* pv. vesicatoria 85-10. Beilstein Journal Organic Chemistry 8, 579–596.
- Weise T., Kai M. & Piechulla B. (2013) Bacterial ammonia causes significant plant growth inhibition. *PloS One* 8, e63538.
- Weller D.M., Landa B.B., Mavrodi O.V., Schroeder K.L., De La Fuente L., Blouin Bankhead S., ... Thomashow L.S. (2007) Role of 2,4diacetylphloroglucinol-producing fluorescent *Pseudomonas* spp. in the defense of plant roots. *Plant Biology* 9, 4–20.
- Wenke K., Kai M. & Piechulla B. (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. *Planta* 231, 499–506.
- Wenke K., Wanke D., Kilian J., Berendzen K., Harter K. & Piechulla B. (2012) Volatiles of two growth-inhibiting rhizobacteria commonly engage AtWRKY18 function. *Plant Journal* **70**, 445–459.
- Werner S., Polle A. & Brinkmann N. (2016) Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soilinhabiting organisms. *Applied Microbiology Biotechnology* 100, 8651–8665.
- Wilson L.G., Bressan R.A. & Filner P. (1978) Light-dependent emission of hydrogen sulfide from plants. *Plant Physiology* 61, 184–189.

- Winner W.E., Smith C.L., Koch G.W., Mooney H.A., Bewley J.D. & Krouse H.R. (1981) Rates of emission of H₂S from plants and patterns of stable sulfur isotope fractionation. *Nature* 289, 672–673.
- Xie X., Zhang H. & Paré P.W. (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium *Bacillus subtilis* (GB03). *Plant Signaling Behaviour* 4, 948–953.
- Zamioudis C., Korteland J., van Pelt J.A., van Hamersfeld M., Dombrowski N., Bai Y., ... Pieterse C.M.J. (2015) Rhizobacterial volatiles and photosynthesisrelated signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. *The Plant Journal* 84, 309–322.
- Zeller S.L., Brandl H. & Schmid B. (2007) Host-plant selectivity of rhizobacteria in a crop/weed model system. *PloS One* 9, e846.
- Zeng Q.-H., Zhao J.-B., Wang J.-J., Zhang X.-W. & Jiang J.-G. (2016) Comparative extraction processes, volatile compounds analysis and antioxidant activities of essential oils from *Cirsium japonicum* Fisch. Ex DC and *Cirsium setosum* (Willd.) M.Bieb. *LWT – Food Science Technology* **68**, 595–605.
- Zgadzaj R., Garrido-Oter R., Jensen D.B., Koprivova A., Schulze-Lefert P. & Radutoiu S. (2016) Root nodule symbiosis in *Lotus japonicus* drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. *Proceedings National Academy Sciences USA* **113**, E7996–E8005.
- Zhang H., Kim M.S., Krishnamachari V., Payton P., Sun Y., Grimson M., ... Paré P.W. (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in *Arabidopsis*. *Planta* 226, 839–851.
- Zhou J.Y., Li X., Zheng J.Y. & Dai C.C. (2016) Volatiles released by endophytic *Pseudomonas fluorescens* promoting the growth and volatile oil accumulation in *Atractylodes lancea*. *Plant Physiology Biochemistry* **101**, 132–140.

- Zou C., Li Z. & Yu D. (2010) *Bacillus megaterium* strain XTBG34 promotes plant growth by producing 2-pentylfuran. *Journal Microbiology* **48**, 460-466.
- Zou C.S., Mo M.H., Gu Y.Q., Zhou J.P. & Zhang K.Q. (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. *Soil Biology Biochemistry* 39, 2371–2379.

Received 13 January 2017; received in revised form 15 June 2017; accepted for publication 16 June 2017

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

Figure S1. Overlap of bacterial species of plant microbiomes and registered species of mVOC database item.

Figure S2. Abundance of discrete mVOCs.

Table S1. Analysis of plant microbiome literature

Table S2. Comparison of the emission of discrete VOCs of bacteria, fungi and plants.

 Table S3. Investigations considering inorganic volatilemediated interactions between plants and bacteria.