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Abstract—This paper explores scalable implementation
strategies for carrying out lazy schema evolution in NoSQL
data stores. For decades, schema evolution has been an
evergreen in database research. Yet new challenges arise in
the context of cloud-hosted data backends: With all database
reads and writes charged by the provider, migrating the entire
data instance eagerly into a new schema can be prohibitively
expensive. Thus, lazy migration may be more cost-efficient,
as legacy entities are only migrated in case they are actually
accessed by the application.

Related work has shown that the overhead of migrating data
lazily is affordable when a single evolutionary change is carried
out, such as adding a new property. In this paper, we focus on
long-term schema evolution, where chains of pending schema
evolution operations may have to be applied. Chains occur
when legacy entities written several application releases back
are finally accessed by the application. We discuss strategies
for dealing with chains of evolution operations, in particular,
the composition into a single, equivalent composite migration
that performs the required version jump.

Our experiments with MongoDB focus on scalable imple-
mentation strategies. Our lineup further compares the number
of write operations, and thus, the operational costs of different
data migration strategies.

Keywords-NoSQL Databases, Schema Evolution, Data Mi-
gration Strategies, Lazy Migration, Lazy Composite Migration,
Incremental Migration, Predictive Migration

I. INTRODUCTION

With agile development, applications evolve continuously.
This clashes with the tradition of declaring a fixed database
schema up front. Let us consider the example of an online
role playing game, with player entities stored in the pro-
duction data store. Even though the data store itself may
be schema-flexible, the currently serving application code
expects all player entities to adhere to a certain schema. Let
us assume that the upcoming application release requires
that all players carry a new property points.

Since the schema is about to change, the issue of legacy
players already stored in the data store, and still without
a points property, needs to be addressed. Traditionally,
data migration is carried out eagerly, upgrading all legacy
players with the new property. Yet for applications that are
clients of a database-as-a-service product, eager migration
can be rather costly: Commonly, cloud providers charge
for the amount of data stored, as well as for all physical

database reads and writes (c.f. 0.18USD per 100 thousand
written entities in the current Google Cloud Datastore pric-
ing model [1]). Frequent software releases can therefore
significantly drive up the operational costs.

Therefore, some development teams prefer lazy migration
instead. Then, a legacy player is only migrated when it is
actually accessed by the application. This can be preferable
in cases where the portion of “hot” players is only a small
subset of the entire data instance.

Today, the state-of-the-art in lazy schema evolution for
NoSQL data stores are dedicated object-NoSQL mapper
libraries [2]: For simply adding the points property, a Java
attribute is added to the declaration of class Player. This
trivial code change is shown in Figures 1(a) and 1(b). Thus,
whenever a legacy player is loaded into the application, and
later written back to the data store, this player has been
successfully migrated to the latest schema.

Yet tackling data migration via object-NoSQL mappers in-
evitably introduces latency, due to the inherent performance
overhead of carrying out changes within the application
code. Moreover, developers need to take great care that all
object mapper class declarations are backwards-compatible
with all earlier schema versions, to avoid runtime exceptions
during lazy migration [3]. Also, with more complex schema
changes, the data migration code becomes increasingly com-
plex, and technical debt piles up accordingly.

In this paper, we explore new approaches. One conjecture
is that it is more sustainable to tackle data migration within
the data store, rather than within the application code. A
second conjecture is that when chains of pending evolution
operations are to be applied lazily, it makes sense to combine
them into composite operations, to more efficiently bridge
the version jump to the latest schema version.
Contributions: This paper makes these contributions:

• We discuss data migration as an optimization problem
in the context of the four dimensions time, amount,
operation execution, and location.

• We consider basic schema changes such as adding,
deleting, or renaming a property, and also more ad-
vanced schema changes such as moving or copying
a property between entities. This is the scope of our
schema evolution language, which we have introduced
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in earlier work [4]. We study chains of pending schema
changes that are to be applied lazily, and declare rules
for deriving lazy composite migrations.

• We experimentally compare three different implemen-
tation strategies for lazy data migration carried out
in the popular NoSQL data store MongoDB: (1) We
implement schema changes within the application code,
(2) we use the native update API provided by the data
store, and (3) we use database stored procedures. We
compare the runtime, throughput, and the number of
physical writes when chains are executed in sequence
(lazy stepwise), or as lazy composite migrations.

• Based on simulation analysis, we compare different
data migration strategies: Eager, lazy stepwise, and
lazy composite migration. Furthermore, we blend lazy
and eager migration into incremental and predictive
migration. Our in-depth analysis reveals major impact
parameters, such as the length of version jumps to be
bridged, and the application access pattern.

Structure: This paper is structured as follows. In Section II,
we sketch the scenario of a schema being imposed by the
application code onto an otherwise schema-flexible data
store. We further discuss data migrations in the context of
four dimensions. In Section III, we introduce the formal
preliminaries underlying our work. Section IV introduces
version jumps and the composition rules for evolution oper-
ations. In Sections V and VI, we evaluate different strategies
for implementing data migration, using experiments and
simulation-based analysis. Section VII references related
work. We then conclude with Section VIII.

II. SCHEMA EVOLUTION IN AGILE DEVELOPMENT

We consider a common scenario in agile software de-
velopment, where applications are deployed continuously
against a NoSQL production data store such as MongoDB.

A. Application-imposed Schema

The application code expects to load and store entities
according to a given data model, or schema. With each new
release of the application code, this schema may change. We
therefore distinguish different schema versions.

There are different scenarios how the current application
schema can be made available:

1) In professional development, applications frequently
use object-NoSQL mappers for the marshalling of
entities into objects of the application space. Then, an-
notated class declarations implicitly declare a database
schema. Figure 1 shows the declarations of classes
Player, Mission, and Stats in a first application release.
All classes carry a designated attribute version to keep
track of the schema version.1

1Assuming that class declarations carry a dedicated version attribute is
reasonable: Empirical analysis of open source projects shows that main-
taining timestamps or versions in persisted entities is common practice [5].

@Entity
class Player {
@Id Integer id;
String name;

Integer version = 1;
}

(a) Initial Player schema.

@Entity
class Player {
@Id Integer id;
String name;
Integer points;
Integer version = 2;

}

(b) Upcoming Player schema.

@Entity
class Mission {
@Id Integer id;
String title;
Integer pid;
Integer version = 1;

}

(c) Initial Mission schema.

@Entity
class Stats {
@Id Integer id;
Integer mid;
Integer level;
Integer version = 1;

}

(d) Initial Stats schema.

Figure 1. Class declarations implicitly declare a database schema.

Figure 2. Schema evolution between application releases.

2) The schema may also be explicitly declared: For in-
stance, the schema-flexible data store MongoDB allows
for an optional schema to be registered. MongoDB then
ensures that all entities validate against this schema [6].

3) Alternatively, the schema may be extracted from the
data instance in a reverse-engineering step (c.f. [7]).

Figure 2 summarizes these scenarios. The arrows denote
the data flow. To the top, we see the application deployed to
the production environment, due to a new release. The ap-
plication version changes from v to v+1. In the middle, we
see that the current schema, as expected by the application
code, changes accordingly. The NoSQL data store, however,
is schema-flexible and contains entities in different versions.

As the application code changes to version v + 1, all
entities persisted in the data store so far become legacy
entities, and may not adhere to the new schema Sv+1. We
assume that the mapping from schema Sv to its successor
schema Sv+1 is described by schema evolution operations.
Again, the mapping may be explicitly declared, or derived
by comparing the different versions of the application code.
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In this paper, we capture schema evolution operations in a
language that we have already introduced and employed in
earlier work [4], [8], [9]. Figure 3 shows the grammar. The
schema evolution language contains single-type operations
which add, delete, or rename properties from all entities of
a given class (or entity type, as defined later in Section III),
e.g., adding a property points to all players. The language
further allows multi-type operations to copy or move prop-
erties between classes, e.g., copying a player’s points to all
of his or her Mission entities. We assume that all multi-type
operations that are executed are safe [4], so their result is
well-defined and does not depend on the execution order.

Copying is an important schema change with NoSQL data
stores, where schema denormalization is common.

B. Dimensions of Data Migration

We consider four orthogonal dimensions of data migration
triggered by schema evolution:

1) Time
2) Amount
3) Operation Execution
4) Location

These dimensions are now described in detail.
Time: Within the time interval starting with the intro-

duction of a new schema version until the newly released
application accesses a persisted entity, the data migration has
to be completed. In this paper, we consider different data
migration strategies. Eager migration transforms all legacy
entities when a new schema version becomes available.
Lazy migration changes an entity only when it is actually
accessed by the application. Eager and lazy migration may
be blended, as discussed in Section VI-C, in order to reduce
the average latency of accessing an entity.

Amount: We further consider the amount of data that
we migrate. If an application requests an entity and there is a
pending copy or move operation, additional entities are likely
to be affected. Now the question is whether these affected
entities should be migrated as well, possibly causing further,
cascading migration operations. This tradeoff requires a
realistic cost model.

Operation Execution: By operation execution, we de-
scribe how schema evolution is carried out. For instance,
when a legacy entity from several versions back needs to be
migrated, the pending schema changes may be either applied
as stepwise or as composite migrations (c.f. Section IV).

Location: The fourth dimension is more technical and
describes the location in the software stack where the migra-
tion is carried out. For instance, orchestrating migration from
within the application code can be expected to be slower
than migration via database-provided update mechanisms
or database-internal stored procedures. At the same time,
depending on the complexity of the migration operations and
the functionality of the NoSQL data store, it may not even

be possible to realize all migration operations with native
database operations. We refer to Section V for a discussion.

III. PRELIMINARIES

In the following, we provide the formal foundations for
the rest of this paper. We begin with an introduction of
some core terminology and then proceed with the schema
evolution and migration operations.

A. Entities, Entity Types, and Schemas in NoSQL Databases

An entity et,v is a persisted object in a NoSQL database. It
carries a type identifier t (denoting, for instance, a Player or
a Mission entity), and further a set of properties. Properties
consist of a name and a value. A value can be atomic (e.g.,
a string or numeric), or structured (an object or an array).
Structured properties can be nested. Each entity carries a
schema version number v. In a document oriented NoSQL
data store such as MongoDB, we regard a (JSON) document
as an entity. In a column-family database such as Cassandra,
each row is an entity.

An entity type Et,v declares the structure of all entities
that share the type identifier t (in our example, Player or
Mission) and the schema version number v. In the entity
type, structural constraints of the entities associated with
this entity type are declared. Thus, the entity type declares
a set of common properties and also whether a property
is required or optional. In document oriented NoSQL data
stores, the entity type may be declared using JSON schema
or some database-propietary schema language. In a column-
family data store, the entity type is usually represented by
the tabular structure.

The schema Sv expected by an application release v is
the set of all entity types Et,v .

B. Schema Evolution and Migration Operations

The schema evolution operation evolvev+1 defines the
transition of the schema Sv in version v into the schema
Sv+1. Thus, evolve operates on the level of entity types.
We write:

Sv+1 ←− evolvev+1(Sv)

The syntax of schema evolution operations as used in this
paper is shown in Figure 3.

The single-type operations add, delete, and rename apply
to one entity type at a time. The multi-type operations move
and copy operate on two or more entity types and are vital
in NoSQL data stores, where denormalization is common
when joins are not natively supported.

Migration operations carry out the structural changes at
the level of the actual entities. We assume that given an
evolution operation evolvev+1, a corresponding migration
operation migratev+1 can be derived. As the actual defini-
tion of the migration operation depends on the interfaces
of the underlying NoSQL data store, we treat migration
operations on an abstract level. A single-type migration
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evolvev+1(Sv) = typeop | propertyop;

typeop = createtype | droptype | renametype;
createtype = "create type" tname;
droptype = "drop type" tname;
renametype = "rename type" tname;
propertyop = singletypeop | multitypeop;
singletypeop = add | delete | rename;
multitypeop = move | copy;
add = "add" datatype property [ defaultValue ]

[ selection ] [ "," add ];
delete = "delete" property [selection]

[ "," delete ];
rename = "rename" property "to" pname [ selection]

[ "," rename ];
move = "move" property "to" ( tname | property )

"where" joincond [ "and" conds ];
copy = "copy" property "to" ( tname | property )

"where" joincond [ "and" conds ];
selection = "where" cond;
conds = ( joincond | cond ) [ "and" conds ];
joincond = property "=" property;
cond = property "=" literal;
property = tname "." pname;

Figure 3. EBNF of the schema evolution language, originally from [4].

(a) Single-type operations add, delete, and rename.

(b) Multi-type operations move and copy.

Figure 4. Relationship between schema evolution operations (evolve) and
migration operations (migrate).

operation (add, delete, or rename) transforms an entity from
version v to version v + 1. We therefore write

et,v+1 ←− migratev+1(et,v).

Figure 4(a) visualizes the relationship between the oper-
ations evolve and migrate for single-type operations.

The multi-type operations move and copy contain a join
condition that involves entities of more than one entity type.
Here, a prerequisite is that all affected entities are migrated
from schema version v into version v+1. The copy operation
updates the entities of one entity type, whereas the move

operation updates the entities of two different entity types.
For instance, the following migration operation can encode
a move operation:

(et1,v+1, et2,v+1)←− migratev+1(et1,v, et2,v)

Figure 4(b) shows a multi-type schema evolution and
the related migration operation. The downward facing ar-
row between the abstraction levels expressed by operation
evolvev+1 and migratev+1 illustrates the following: For
each schema evolution operation, a corresponding migra-
tion operation can be generated that realizes the structural
changes at the level of the entities.

IV. VERSION JUMPS AND COMPOSITE MIGRATIONS

When a legacy entity from several versions back has to be
migrated to the most up-to-date version, we talk of version
jumps that need to be bridged.

Lazy composite migrations can be effective short-cuts in
performing version jumps, as illustrated in Figure 5. In a
first step, we compose the schema evolution operations;
in a second step, a data migration operation is derived
from the composite schema evolution operation. Thus, the
composition at the level of schema evolution operations
affects the migration operations at the level of entities as
well: Instead of applying each operation one at-a-time, a
single operation may be executed that yields the same result.

Let us consider a legacy entity et,v , to be migrated by
a chain of pending single-type migration operations into
version v + x:

et,v+x ←− migratev+x(..(migratev+1(et,v)))

The benefit of applying lazy composite migration, rather
than lazy stepwise migration, is twofold:

1) We only need to persist the latest version et,v+x in the
data store. Any intermediate versions do not need to be
stored. This simple optimization reduces the number of
physical (and usually billable) database writes.

2) Sometimes, it is possible to compose several operations
into a single operation, not even materializing interme-
diate versions in main memory. As an effect, we reduce
the latency imposed by lazy migration.

With our rule-based composition that we introduce in
Section IV-B, we combine schema evolution rules and write
evolvei−k to denote that the evolution operations i through k
are combined. As an example, the composed operation
evolve4−5 translates a schema from version 3 into version 5,
and is defined as follows:

evolve4−5(S3) = evolve5(evolve4(S3))

The composite operation generates the same result that
we get if we successively execute each of the single-
step schema evolution operations. Next, for each of these
composed schema evolution operations, a matching data
migration operation is derived. The operations migrate2−5,
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Figure 5. Composition of schema evolution and migration operations.

migrate3−5, and migrate4−5 can be applied for migrating
the entities from version 1, 2, and 3 into version 5.

A. Motivating Example

Before we state our composition rules, we provide an
illustrative example. Let us consider a schema S1 with an
entity type EPlayer,1. Two schema evolution operations are
pending, namely the addition of a new property points,
followed by renaming this property to score:

evolve2: add Player.points = 42
evolve3: rename Player.points to score

The operation evolve2 delivers the schema in version 2,
and evolve3 produces the schema in version 3.

We employ a notation similar to the Hoare Calculus [10],
where schema evolution operations carry pre- and postcondi-
tions. A precondition prop1 /∈ Et,v declares that an operation
can be applied if the property prop1 is not defined in an
entity type in version v, whereas precondition prop2 ∈ Et,v

requires that the property prop2 has to be defined in the
entity type in version v.

precond: {points /∈ EPlayer,1}
evolve2: add Player.points = 42
postcond: {points ∈ EPlayer,2}

precond: {points ∈ EPlayer,2 ∧ score /∈ EPlayer,2}
evolve3: rename Player.points to score
postcond: {points /∈ EPlayer,3 ∧ score ∈ EPlayer,3}

Combining the pre- and post-conditions, we derive the
composition below:

precond: {points /∈ EPlayer,1 ∧ score /∈ EPlayer,1}
evolve2−3: add Player.score = 42
postcond: {points /∈ EPlayer,3 ∧ score ∈ EPlayer,3}

Composition of operations is possible in several cases. In
the next section, we will define a set of composition rules.

B. Composition Rules

An example of a composition rule with its pre- and
postconditions is shown Figure 7: The numerator states a
sequence of two operations, each with pre- and postcondi-
tion. The denominator states the composite operation, again
with its pre- and postcondition. For better readability, we
have omitted the version numbers from entity types. The
preconditions always refer to the current version, whereas
the postconditions are defined for the version that will be

generated by the operation. Owing to space limitations, we
use a tabular arrangement to more compactly present our
composition rules in Figure 6, and refer to the unabridged
rules in the Appendix in Figure 13.

Our rules are data store independent, and can thus be
applied to different NoSQL data stores. They are further
inspired by the rules introduced by Abiteboul et al. [11] for
relational databases, and have been adapted and extended
for the use case of NoSQL evolution operations.

The table in Figure 6 reads as follows. The operations
are defined on entity types. To improve readability, we omit
the version numbers of entity types. The first column shows
the first schema evolution operation op1. As a succeeding
operation, we choose operation op2 from table header row.
The evolution operation obtained by composing op1 and op2
is stated in the corresponding table cell.

For instance, the first rule which is defined in the
table states that “add EB .y = default”, followed by
“rename EB .y to z”, can be replaced by the composite
evolution operation “add EB .z = default”.

The entry “-” declares that we cannot compose the opera-
tions, while “noop” declares that as an effect of composition,
operations op1 and op2 cancel each other out. This holds for
an add or copy, followed by a delete.

If op1 is a copy operation, we distinguish whether the
succeeding operation op2 affects a property of the source
entity type or a property of the target entity type. For
instance, first copying a property from the source to the
target, and then deleting it at the side of the target, undoes
the effect of the copy. However, first copying a property from
the source to the target, and then deleting it at the side of
the source, is equivalent to performing a move. Out of this
reason, the copy operation is listed twice as op1 in Figure 6.

In addition to the rules listed, sequences of single-type
evolution operations of the same kind can be composed.
For instance, two add operations in sequence, on the same
entity type, can be composed to a single composite add.

C. Algorithm for Optimizing Data Migrations

We sketch an algorithm for composing a chain of schema
evolution operations. The evolution operations are managed
in a list. Naturally, the order of the operations in the list
determines the order of their application.

Two operations evolvei and evolvej can be composed
(1) if evolvei matches with op1 and evolvej matches with
op2 in the table from Figure 6, and (2) if there is no
operation evolvek that operates on any of the entity types
that occur in op1 or op2 and that is in the list between
evolvei and evolvej .

If evolvei and evolvej are composed to evolvei−j , then
operation evolvei is removed from the list and the operation
evolvej is replaced by evolvei−j . This process continues
until no further composition can be made.
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\ op2
op1 \

rename EB .y to z copy EB .y to EC .z
cond2

move EB .y to EC .z
cond2

delete EB .y

add EB .y = default add EB .z = default - add EC .z = default
cond2

noop

rename EB .x to y rename EB .x to z copy EB .x to EC .z
cond2

move EB .x to EC .z
cond2

delete EB .x

copy EA.x to EB .y
cond1

copy EA.x to EB .z
cond1

- copy EA.x to EC .z
cond1 and cond2

noop

copy EB .y to ED.u
cond3

- - - move EB .y to ED.u
cond3

move EA.x to EB .y
cond1

move EA.x to EB .z
cond1

- move EA.x to EC .z
cond1 and cond2

delete EA.x

Figure 6. Composition rules for two evolution operations, first op1 and then op2 (without version numbers, for better readability).

{(x ∈ EA) ∧ (y /∈ EB)} move EA.x to EB .y cond1 {(x /∈ EA) ∧ (y ∈ EB)}, {y ∈ EB} delete EB .y {y /∈ EB}
{(x ∈ EA) ∧ (y /∈ EB)} delete EA.x {(x /∈ EA) ∧ (y /∈ EB)}

Figure 7. Composition rule for move-delete operations. The remaining rules are provided in the Appendix in Figure 13.

D. Extended Example

We illustrate the composition rules using a more complex
example, and continue with the gaming application, involv-
ing with Player and Mission entities. The property points has
already been added to Player entities (see evolve2 in Sec-
tion IV-A). We follow up with the next four operations. First,
property points is renamed to score. Later, this property is
copied from Players to their Missions. During development,
the property is further renamed to amount within the Mission
entity type. And finally, the property amount is yet again
moved from the Mission to the Stats entities. Below, we
show these schema evolution operations in sequence.

evolve3: rename Player.points to score
evolve4: copy Player.score to Mission.score

where Player.id = Mission.pid
evolve5: rename Mission.score to amount
evolve6: move Mission.amount to Stats.amount

where Mission.id = Stats.mid

Let us assume that entities are migrated lazily. When the
application in release 6 is about to load a Mission entity, the
pending migration operations need to be applied. We discuss
this scenario at the level of evolution operations: (1) To
evolve from schema version 4, we can compose operations
evolve5 and evolve6 to operation evolve5−6:

evolve5−6: move Mission.score to Stats.amount
where Mission.id = Stats.mid

(2) To evolve from schema version 2, the composition of
evolve3 through evolve6 yields

evolve3−6: copy Player.points to Stats.amount
where Player.id = Mission.pid
and Mission.id = Stats.mid

Based on the composite evolution operations, we can
derive migration operations accordingly. Assuming that each
evolution operation matches one migration operation, we can
now discuss the effectiveness of composition at the level of

migrating individual entities: With lazy composite migra-
tion, we only execute one migration operation migrate5−6

instead of the two operations of lazy stepwise migration.
For even longer version jumps, we can apply migrate3−6

to migrate entities from version 2 into version 6 with lazy
composite migration. In comparison, lazy stepwise migration
requires four operations.

V. EXPERIMENTAL EVALUATION

We experimentally evaluated implementations for carrying
out lazy data migration with MongoDB. We conducted our
experiments using our schema evolution middleware which
actually supports a choice of NoSQL products.

Setup: We used MongoDB 3.2.1, Java version 1.8.0 74
with MongoDB Java Driver version 3.2.2, running on
Ubuntu 14.04 LTS. MongoDB was used as-is, without any
tuning. The experiments were run on a typical NoSQL
commodity machine: The Dell PowerEdge C6220 has 2 Intel
Xeon E5-2609 processors (4 cores each), 32 GB RAM, and
4× 1 TB SATA 7.2 k HDs.

Again, we refer to the scenario of players and their
missions. Each Mission is currently played by exactly one
Player, and each Player is pursuing 50 Missions on average.
In the following, we focus on two dimensions of data
migration in particular, namely operation execution and
location (c.f. Section II).

A. Impact of Operation Execution

Over five releases, properties are added to Players. We
compare two migrations strategies using MongoDB update
operations: In lazy stepwise migration, each add operation
is executed individually, in sequence. In lazy composite
migration, five migration operations are composed into a
single operation. Figure 8(a) shows the accumulated runtime
increasing with the number of Player entities processed. The
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(a) Runtime costs of a sequence of lazy stepwise vs. lazy composite
migrations when adding five properties (update based implementation).

(b) Comparing the runtime costs of alternative implementations of
moving a property from Players to their Missions.

Figure 8. Impact of (a) operation execution and (b) location on runtime costs.

Figure 9. Throughput of a sequence of lazy stepwise vs. lazy composite
migrations when adding five properties (update based implementation).

factor between both approaches increases from 1.08 to 4.51,
and converges to the theoretical limit of 5.

Figure 9 visualizes the throughput for this experiment.
Besides the performance benefit of composition, we see
the advantage of migrating more than one entity at-a-
time, i.e., migrating groups of entities in bulk. This is an
argument in favor of predictive migration, as discussed later
in Section VI-C.

B. Impact of Location

In the previous experiment, the execution of migration
operations was delegated to the database using the Mon-
goDB update language (termed “update based” in Figures 8
and 9). However, NoSQL data stores differ in their update
operations. Therefore, it may not always be possible to
capture the migration operations within the update language,
especially in the case of copy and move operations.

Let us consider a concrete example, where a property is
moved from each Player to the corresponding 50 Mission en-
tities. We compare three location alternatives in Figure 8(b):
One option is to carry out migration within the application
code. This implementation method can always be chosen,
yet not surprisingly, is expensive even for considerably
small inputs. A second option is to use update operations

provided by the database (as done in Figure 8(a)). This
approach is more efficient. However, depending on the
expressiveness of the update API (often, lacking joins), it
may nevertheless be necessary to carry out parts of the
migration within the application code. Thus, this approach is
not always appropriate when facing large volumes of legacy
data. The third approach examined uses a “custom coded”
MongoDB JavaScript function, comparable to a database
stored procedure. This is the most efficient approach w.r.t.
the runtime overhead in our lineup.

VI. SIMULATION-BASED ANALYSIS

We continue with an analysis based on simulations, where
we contrast different migration strategies.

A. Eager vs. Lazy Forms of Migration

We next compare eager migration, lazy stepwise migra-
tion, and lazy composite migration.

We assume a sample application, starting with a data
instance of 100 million entities in version 1. We apply
four evolution operations, that successively transform the
schema into version 2, 3, 4, and finally 5. We further assume
conservatively that from each schema evolution operation,
exactly one migration operation is derived, which then writes
one entity in the NoSQL database. In order to make our
results comprehensible, we make the simplistic assumption
that no entities are added by later releases.

Eager Migration: Eager migration affects all legacy
entities and migrates them into the next version. Figure 10(a)
visualizes the effect over time. The horizontal axis facing the
front shows five schema versions (labeled schema releases),
and represents the progress of releases over time. The
second horizontal axis (labeled entity versions) captures
which schema version the entities in the database actually
comply with. The vertical axis shows the number of entities
(in millions) in the database, at the time of a given schema
release, that are in a given entity version.

The initial release declares schema version 1. Accord-
ingly, all 100 million entities are in version 1 as well. When
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(a) Eager migration. (b) Lazy stepwise migration. (c) Lazy composite migration.

(d) Eager migration. (e) Lazy stepwise migration. (f) Lazy composite migration.

Figure 10. Migration strategies: (a) - (c) Comparing the distribution of entities across schema releases, and (d) - (f) the number of migration operations.

the schema version changes to 2, all entities are eagerly
migrated into entity version 2. This pattern carries forward
to all schema releases. Obviously, with eager migration, all
entities always match the schema of the current release.

Figure 10(d) shows the accumulated number of migration
operations in our simulation. Each operation updates one
entity. At the time of schema release 5, 100 million migra-
tion operations per schema release have been carried out.
We would like to point out that in the current version of the
cloud-hosted database Google Cloud Datastore, performing
a total of 400 million writes costs up to 720 USD [1]. With
weekly and possibly daily releases, this is a considerable
burden on the long-term operational costs.

Lazy Stepwise Migration: In lazy migration, we only
migrate entities on demand, upon access by the application.
For our calculation, we assume that in each schema release,
25% of the entities are accessed and therefore migrated. In
our simulation, we assume a uniform distribution of entity
access. We apply this distribution because it is very easy
to calculate and an estimation of the worst case for lazy
migration. With other access distributions, for instance the
normal distribution, the number of migration operations in
lazy migration is even lower.

Initially, all entities are in version 1. This is captured
in Figure 10(b), where at the time of schema release 1,
all 100 million entities belong to entity version 1. With
schema release 2, 25 million entities are migrated to this next
version, while the majority of entities remains in version 1.
With schema release 3, 25 million entities are migrated lazily
into version 3, originating from versions 1 and 2. At the time
of schema release 5, the data store contains entities in five
schema versions.

The migration of entities from version 2 into 3 can be

done with one migration operation whereas the migration of
entities from version 1 into version 3 requires applying two
migration operations. The accumulated number of migration
operations executed is shown in Figure 10(e). Overall, we
execute fewer migration operations than with eager migra-
tion (c.f. Figure 10(d)), since entities that are not accessed
by the application are not migrated.

The migration effort rises with each schema release: With
advanced schema releases, the length of the version jumps
tends to increase. This drives up the number of migration
operations with lazy stepwise migration, causing the slope
of the curve to increase.

Lazy Composite Migration: We next focus on the
effect of composing migrations, as proposed in Section IV.
Figure 10(c) visualizes the distribution of entities in different
versions as the application is repeatedly released. It is
noteworthy that the distribution is identical to that of lazy
stepwise migration, as shown in Figure 10(b).

The difference between the approaches becomes evident
when we consider the number of migration operations ex-
ecuted: As may be expected, the accumulated number of
migrations, shown in Figure 10(f), is persistently lower than
with lazy stepwise migration, shown in Figure 10(e).

B. Cascading Migration Operations

For the calculations in the previous section, we assumed
single-type operations. With multi-type operations, the cost
model is more involved. The reason are cascading migra-
tion operations. Let us reconsider the example from Sec-
tion IV-D. When loading a Stats entity in the current version
6, it may also be necessary to migrate Missions, because
both are joined in the move evolution operation evolve6.
Furthermore, this can also trigger the migration of Player
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(a)

(b)

Figure 11. Incremental migration strategy, (a) comparing the distribution of
entities across schema releases and (b) the number of migration operations.

entities (evolve4 and evolve5). To counter such cascading
effects, we next introduce hybrid migrations strategies.

C. Blending Lazy and Eager Migration

Hybrid migration strategies blend concepts from lazy and
eager migration. They aim at reducing cascading migration
operations and therefore also the latency overhead.

Incremental Migration: In incremental data migration,
we handle some releases with lazy migration, and others
with eager migration. This choice can be made depending
on the disruptiveness of a schema change (e.g., performing
simple changes lazily), and the heterogeneity of legacy data
in the production database. In our experience, this approach
best matches how development teams proceed in practice.

Figure 11(a) shows a concrete scenario. For the first five
schema releases, lazy stepwise migration is applied. By then,
the database contains different versions of legacy entities,
and is therefore quite heterogeneous. Up to version 5, this
strategy requires the same number of migration operations
as lazy migration (see Figure 10(e)). To transfer the data
instance into a structurally homogeneous state, the migration
into version 6 is done eagerly. The resulting data instance
may be seen as a schema-consistent snapshot, from which
we again continue with lazy migration. In Figure 11(a), we
therefore see a distinguished, single spike at the time of
schema release 6, when all entities are in version 6. By the
time of schema release 8, the production database contains
entities in three versions.

The accumulated number of migration operations is

shown in Figure 11(b). Again, we see an increase between
schema releases 5 and 6, caused by the effort of eager
migration. For the succeeding schema releases, the gradient
again decreases, as lazy migration needs to span versions
jumps of length at most 2.

Predictive migration: An inherent downside of lazy
migration is the latency overhead when legacy entities are
accessed by the application. To reduce the average latency,
we employ predictive migration, and proactively migrate
legacy entities that are likely to be accessed by the applica-
tion in the near future. We can carry out predictive migration
in the background, concurrently to lazy migration.

(a)

(b)

Figure 12. Predictive migration strategy, (a) comparing the distribution of
entities at schema release 5 against lazy stepwise migration, and (b) also
comparing the accumulated number of migration operations.

In Figure 12, we simulate this strategy for our running
example. We predict 25 million entities and migrate them
into the latest version. Whereas the development and val-
idation of a forecast function is part of our future work,
we assume for the simulation that in 50% of cases, the
function delivers correct predictions. A prediction may turn
out to be incorrect, because this function uses heuristics.
Figure 12(a) contrasts lazy stepwise migration, as discussed
earlier, with the predictive approach: It shows the distribu-
tion of entity versions at the time of release 5. Predictive
migration increases the number of migration operations (see
Figure 12(b)), but decreases the average latency, since more
entities reside in younger schema versions. Another advan-
tage of predictive migration is that the update operations can
be executed in bulk (as discussed in Section V).

Whether predictive migration is combined with lazy step-
wise migration, lazy composite migration, or incremental
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migration, it can effectively reduce latency, provided that a
suitable prediction function is employed.

VII. RELATED WORK

For eagerly evolving the schema in relational or NoSQL
data stores, the developer community has produced a range
of practical tools: For instance, Flyway and Liquibase (for
relational databases), or Mongeez (for MongoDB) trigger
eager migration at application startup. Eager migration re-
quires careful management, to avoid application downtime.
Google’s data store F1 is one of the few systems custom-
tailored to avoid downtimes in eager migration [12]. How-
ever, eager migration may be costly, causing high numbers
of billable reads and writes against a cloud-hosted database.
In such settings, lazy migration may be a preferable strategy.

A first set of experiments studying the performance over-
head of lazy migrations in NoSQL data stores can be found
in [13]. There, it is shown that the overhead of lazy migration
is affordable, when one single-step evolution operation is
applied (i.e., an add, rename, or delete). Our work goes fur-
ther and considers composite migrations, executing several
pending schema changes for a legacy entity in one go, rather
than one after the other. Thus, we can effectively bridge what
we call version jumps.

We would like to point out that composition in the
context of lazy migration is, to our knowledge, a novel
twist to an established research area: In database theory,
the composition of eager migrations (or schema mappings)
in the relational domain is a well-studied topic. We refer
to [14] for a fundamental introduction. In the context of
lazy migration, however, legacy entities in different schema
versions may co-exist in the same data store.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we examined strategies for scalable long-
term lazy schema evolution in NoSQL data stores (lazy
stepwise, lazy composed, predictive, and incremental data
migration). In particular, we proposed a rule-based compo-
sition for chains of pending schema evolution operations.
Our experiments and our simulation-based analysis show
that we can effectively reduce the number of migration
operations. This immediately manifests in fewer (billable)
database writes and is particularly interesting in setups where
the database is provided as-a-service. We further analyzed
hybrid migration strategies that blend release rounds using
lazy migration with rounds using eager migration.

One of our future tasks is to develop a holistic cost model
that captures the tradeoffs involved in choosing a migration
strategy. The cost model is a basis for deciding how schema
evolution and data migration for a given application are
best realized. A major challenge here is to capture the risk
involved with migrating legacy entities: From the viewpoint
of the DevOps team, it is desirable to deploy continuously.
This speaks in favor of migrating legacy entities lazily, rather

than eagerly (since the latter is challenging to do with zero
downtime). At the same time, when lazy migration has to
bridge version jumps, the latency imposed by lazy migration
can be an incalculable risk to the smooth operation of the
application. Having a holistic cost model would allow a
proper risk assessment, which is preferable to the status quo,
where decisions about the schema evolution strategy merely
rely on the experience of the DevOps team.

We regard the work presented in this paper as a foundation
for crafting a comprehensive cost model.
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