In for a Surprise when Migrating NoSQL Data

Uta Storl, Alexander Tekleab

uta.stoerl @h-da.de

Abstract—Schema-flexible NoSQL data stores lend themselves
nicely for storing versioned data, a product of schema evolution.
In this lightning talk, we apply pending schema changes to
records that have been persisted several schema versions back.
We present first experiments with MongoDB and Cassandra,
where we explore the trade-off between applying chains of
pending changes stepwise (one after the other), and as composite
operations. Contrary to intuition, composite migration is not
necessarily faster. The culprit is the computational overhead
for deriving the compositions. However, caching composition
formulae achieves a speed up: For Cassandra, we can cut the
runtime by nearly 80%. Surprisingly, the relative speedup seems
to be system-dependent.

Our take away message is that in applying pending schema
changes in NoSQL data stores, we need to base our design
decisions on experimental evidence rather than on intuition alone.

Index Terms—NoSQL databases; schema evolution; data mi-
gration; composite migration

I. QUESTION

We consider the scenario of data evolving over time and
stored in a schema-flexible NoSQL data store. Different from
related work [1], we assume that legacy data resides in one of
several legacy schema versions. This is a scenario often faced
by agile development teams, as frequent releases imply equally
frequent schema changes. Consequently, when a record is
loaded into the application, several schema pending changes
may have to be applied.

While NoSQL data stores are popular in agile application
development, there is still little systematic tool support for
large-scale data migrations. In building such a tool, we set out
to explore a seemingly straightforward hypothesis:

Carrying out composite operations that perform sev-
eral schema changes at once, rather than applying
them one by one, is more efficient.

In earlier work, we have introduced the theory for compos-
ing operations which add, remove, and rename a property, as
well as copy and move properties [2].

As discussed next, in our experiments with MongoDB and
Cassandra, we were in for a surprise.

II. RESULTS

We run our experiments against MongoDB v3.4.2 and
Cassandra v3.9. As hardware, we use a Dell PowerEdge C6320
with 2 Intel Xeon E5-2695v2 CPUs and 128GB RAM. We
carry out schema changes by calling the native database APIs.

Figure 1 shows the total accumulated runtimes for step-
wise and composite migration, executed on 10,000 persisted

Meike Klettke
Darmstadt Univ. of Applied Sciences, Germany University of Rostock, Germany
meike.klettke @uni-rostock.de

Stefanie Scherzinger
OTH Regensburg, Germany
stefanie.scherzinger @ oth-regensburg.de

B stepwise migration
60 O composite migration
B cached composite migration

[o)}
[9)]

55
50
45
40
35
30
25
20

15
10

Total accumulated runtime (seconds)

Cassandra

MongoDB

Fig. 1. Total accumulated runtime for applying five pending schema changes
to 10,000 entities, realized as stepwise or composite migration.

entities. For the evaluation, we consider a chain of five
operations: add, add, rename, rename, and delete. This
chain can be collapsed to a single, composite add [2]. As
described in [2], we can also collapse more complex chains
into composite migration operations.

Surprisingly, composite migration is not immediately faster:
Closer analysis reveals that it is the overhead of computing
the compositions repeatedly, which falsifies our hypothesis.
Interestingly, the relative difference in runtime is more striking
for Cassandra, and not as noticeable for MongoDB. Thus, the
runtime behavior is highly system-specific. By introducing a
cache and storing the computed composition formulae, we can
effectively reduce the runtimes when compared to the stepwise
approach: As shown in Figure 1, we achieve a reduction by
about 50% for MongoDB, and by nearly 80% for Cassandra.

Our take away message is that in architecting a scalable data
migration tool for NoSQL data stores, careful engineering is
called for. In particular, a thorough experimental analysis is
required, since tackling this task is not as straightforward as
might be expected.

ACKNOWLEDGEMENT
This project was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation), grant #385808805.
REFERENCES

[1] K. Saur, T. Dumitras, and M. W. Hicks, “Evolving NoSQL Databases
Without Downtime,” in Proc. ICSME’16, 2016.

[2] M. Klettke, U. Storl, M. Shenavai, and S. Scherzinger, “NoSQL Schema
Evolution and Big Data Migration at Scale,” in Proc. SCDM’16, 2016.



