
Managing Schema Evolution in NoSQL Data Stores

Stefanie Scherzinger
Regensburg University

of Applied Sciences
stefanie.scherzinger@hs-regensburg.de

Meike Klettke
University of Rostock

meike.klettke@uni-rostock.de

Uta Störl
Darmstadt University
of Applied Sciences
uta.stoerl@h-da.de

Abstract
NoSQL data stores are commonly schema-less, providing no means
for globally defining or managing the schema. While this offers
great flexibility in early stages of application development, devel-
opers soon can experience the heavy burden of dealing with in-
creasingly heterogeneous data. This paper targets schema evolution
for NoSQL data stores, the complex task of adapting and chang-
ing the implicit structure of the data stored. We discuss the re-
commendations of the developer community on handling schema
changes, and introduce a simple, declarative schema evolution lan-
guage. With our language, software developers and architects can
systematically manage the evolution of their production data and
perform typical schema maintenance tasks. We further provide a
holistic NoSQL database programming language to define the se-
mantics of our schema evolution language. Our solution does not
require any modifications to the NoSQL data store, treating the data
store as a black box. Thus, we want to address application develop-
ers that use NoSQL systems as database-as-a-service.

Categories and Subject Descriptors H.2.3 [Database Manage-
ment]: Languages

General Terms NoSQL data stores, schema evolution

Keywords API for data stores, schema evolution language, schema
management, eager migration, lazy migration, schema versioning

1. Introduction
The classic database textbook dedicates several chapters to schema
design: Carefully crafting an abstract model, translating it into a
relational schema, which is then normalized. While walking their
students through the course, scholars emphasize again and again
the importance of an anticipatory, holistic design, and the perils of
making changes later on. Decades of experience in writing database
applications have taught us this. Yet this waterfall approach no
longer fits when building today’s web applications.

During the last decade, we have seen radical changes in the way
we build software, especially when it comes to interactive, web-
based applications: Release cycles have accelerated from yearly
releases to weekly or even daily, new deployments of beacon ap-
plications such as Youtube (quoting Marissa Meyer in [22]). This
goes hand in hand with developers striving to be agile. In the spirit
of lean development, design decisions are made as late as possible.
This also applies to the schema. Fields that might be needed in the
future are not added presently, reasoning that until the next release,
things might change in a way that would render the fields unneces-
sary after all. It is partly due to this very need for more flexibility,
that schema-free NoSQL data stores have become so popular. Typ-
ically, developers need not specify a schema up front. Moreover,
adding a field to a data structure can be done anytime and at ease.

Scope of this work. We study aspects of schema management
for professional web applications that are backed by NoSQL data
stores. Figure 1 sketches the typical architecture. All users interact
with their own instance of the application, e.g. a servlet hosted by a
platform-as-a-service, or any comparable web hosting service. It is
established engineering practice that the application code uses an
object mapper for the mapping of objects in the application space
to the persisted entities.

Figure 1. Architecture of an interactive web application.

We further assume that the NoSQL data store is provided as
database-as-a-service, so we have no way of configuring or extend-
ing it. Our work addresses this important class of applications. Of
course, there are other use cases for employing NoSQL technology,
yet they are not the focus of our work.

Case Study: Blogging applications. We introduce a typical ex-
ample of a professional web application: An online blog. In the
spirit of shipping early and often, both the features of our applica-
tion as well as the data will evolve.

We use a NoSQL data store, which stores data as entities. We
will establish our terminology in later chapters, and make do with
a hand-wavy introduction at this point. Each entity has an entity
key, which is a tuple of an entity kind and an identifier. Each entity
further has a value, which is a list of properties:

(kind, id) = { comma-separated list of properties }

Let us dive right in. In our first release, users publish blogs (with
title and content) and guests can leave comments on blogposts.
For each blogpost, information about the author and the date of
the post is stored. In the example below, we use a syntax inspired

ar
X

iv
:1

30
8.

05
14

v1
  [

cs
.D

B
] 

 2
 A

ug
 2

01
3



by JSON [21], a lightweight data-interchange format widely used
within web-based applications.

(blogpost, 007) = {
title: "NoSQL Data Modeling Techniques",
content: "NoSQL databases are often ...",
author: "Michael",
date: "2013-01-22",
comments: [
{ comment-content: "Thanks for the great article!",

comment-date: "2013-01-24" },
{ comment-content: "I would like to mention ...",

comment-date: "2013-01-26" } ] }

Soon, we realize that changes are necessary: We decide to
support voting, so that users may “like” blogposts and comments.
Consequently, we expand the structure of blogposts and add a
“likes” counter. Since we have observed some abuse, we no longer
support anonymous comments. From now on, users authenticate
with a unique email address. Users may choose a username (user)
and link from their comments to their website (url), as well as
specify a list of interests. Accordingly, we add new fields.

We take a look at a new data store entity (blogpost, 234708)
and the state of an older entity (blogpost, 007) that has been
added in an earlier version of the application. For the sake of
brevity, we omit the data values:

(blogpost, 234708) = {
title, content, author, date, likes,
comments [
{ comment-content, comment-date, comment-likes,

user, email, url, interests[ ] } ] }

(blogpost, 007) = {
title, content, author, date,
comments [
{ comment-content, comment-date },
{ comment-content, comment-date } ] }

Next, we decide to reorganize our user management. We store
user-related data in separate user entities. These entities contain
the user’s login, passwd, and picture.

During this reorganization we further rename email to login
in blogpost entities. The interests are moved from blogpost
to the user entities, and the url is removed. Below, we show
blogpost (blogpost, 331175) of this new generation of data,
along with old generation blogposts that were persisted in earlier
versions of the application. The structural differences are apparent.

(blogpost, 331175) = {
title, content, author, date, likes,
comments [
{ comment-content, comment-date,

comment-likes, user, login } ] }
(user, 42) = { login, passwd, interests[ ], picture }

(blogpost, 234708) = {
title, content, author, date, likes,
comments [
{ comment-content, comment-date, comment-likes,

user, email, url, interests[ ] } ] }

(blogpost, 007) = {
title, content, author, date,
comments [
{ comment-content, comment-date },
{ comment-content, comment-date } ] }

After only three releases, we have accumulated considerable
technical debt in our application code. It is now up to the developers
to adapt their object mappers and the application logic so that all
three versions of blogposts may co-exist.

Whenever a blogpost is read from the data store, the application
logic has to account for the heterogeneity in the comments: Some
comments do not have any user information, while others have
information about the user identified by email (along with other
data). A third kind of blogpost contains comments identified by
the user’s login. If new generation comments are added to old
generation blogposts, we produce even a fourth class of blogposts.

Not only does this introduce additional code complexity, it also
increases the testing effort. With additional case distinctions, a
good code coverage in testing becomes more difficult to obtain.

In an agile setting where software is shipped early and often,
developers would rather spend their time writing new features than
fighting such forms of technical debt. At the same time, the NoSQL
data store offers little, if any, support in evolving the data along with
the application. Our main contribution in this paper is an approach
to solving these kinds of problems.

Schema evolution in schema-less stores. While the sweet spot of
a schema-less backend is its flexibility, this freedom rapidly mani-
fests in ever-increasing technical debt with growing data structure
entropy. Once the data structures have degenerated, a NoSQL data
store provides little support for getting things straightened out.

Most NoSQL data stores do not offer a data definition language
for specifying a global schema (yet some systems, such as Cas-
sandra, actually do [1]). Usually, they merely provide basic read-
and write operations for manipulating single entities, delegating the
manipulation of sets of entities completely to the application logic.
Consequently, these systems offer no dedicated means for migrat-
ing legacy entities, and developers are referred to writing batch jobs
for data migration tasks (e.g. [23]). In such batch jobs, entities are
fetched one-by-one from the data store into the application space,
modified, and afterwards written back to the store. Worse yet, since
we consider interactive web applications, migrations happen while
the application is in use. We refer to data migration in batches as
eager migration, since entities are migrated in one go.

Alas, for a popular interactive web-application, the right mo-
ment for migrating all entities may never come. Moreover, a large-
scale data store may contain legacy data that will never be accessed
again, such as stale user accounts, blogposts that have become out-
dated, or offers that have expired. Migrating this data may be a
wasted effort, and expensive, when you are billed by your database-
as-a-service provider for all data store reads and writes.

As an alternative, the developer community pursues what we
call a lazy data migration strategy. Entities of the old and new
schema are allowed to co-exist. Whenever an entity is read into the
application space, it can be migrated. Effectively, this will migrate
only “hot” data that is still relevant to users. For instance, the Objec-
tify object mapper [27] has such support for Google Datastore [15].
However, all structure manipulations require custom code. As of to-
day, there is no systematic way to statically analyze manipulations
before executing them. Moreover, from a database theory point-of-
view, lazy migration is little understood (if at all). This makes lazy
migration a venture that, if applied incorrectly on production data,
poses great risks. After all, once entities have been corrupted, there
may be no way to undo the changes.

Desiderata. What is missing in today’s frameworks is a means
to systematically manage the schema of stored data, while at the
same time maintaining the flexibility that a schema-less data store
provides. What we certainly cannot wish for is a rigorous corset
that ultimately enforces a relational schema on NoSQL data stores.

Most systems do provide some kind of data store viewer, where
single entities can be inspected, and even modified, or data can be
deleted in bulk (e.g. [14]). Yet to the best of our knowledge, there is
no schema management interface that would work across NoSQL
systems from different providers, allowing application administra-



tors to manage their data’s structure systematically. This entails ba-
sic operations such as adding or deleting fields, copying or moving
fields from one data structure to another. From studying the discus-
sions in developer forums, we have come to believe that these are
urgently needed operations (e.g. [23, 27, 33] to list just a few refer-
ences). Add, rename, and delete correspond to the capabilities of an
“ALTER TABLE” statement in relational databases. Just as with re-
lational databases, more complex data migration tasks would then
have to be encoded programmatically.

Yet in the majority of NoSQL databases, any data structure
maintenance affecting more than one entity must be coded man-
ually [23, 27, 34]. We still lack some of the basic tooling that one
would expect in a NoSQL data store ecosystem, so that we may
professionally maintain our production data in the long run.

Contributions. The goal of this work is to address this lack of
tooling. We lay the foundation for building a generic schema evolu-
tion interface to NoSQL systems. Such a tool is intended for devel-
opers, administrators, and software architects to declaratively man-
age the structure of their production data. To this end, we make the
following contributions:

• We investigate the established field of schema evolution in the
new context of schema-less NoSQL data stores.

• We contribute a declarative NoSQL schema evolution language.
Our language consists of a set of basic yet practical operations
that address the majority of the typical cases that we see dis-
cussed in developer forums.

• We introduce a generic NoSQL database programming lan-
guage that abstracts from the APIs of the most prominent
NoSQL systems. Our language clearly distinguishes the state
of the persisted data from the state of the objects in the appli-
cation space. This is a vital aspect, since the NoSQL data store
offers a very restricted API, and data manipulation happens in
the application code.

• By implementing our schema evolution operations in our
NoSQL database programming language, we show that they
can be implemented for a large class of NoSQL data stores.

• We investigate whether a proposed schema evolution operation
is safe to execute.

• Apart from exploring eager migration, we introduce the notion
of lazy migration and point out its potential for future research
in the database community.

Structure. In the next section, we start with an overview on the
state-of-the-art in NoSQL data stores. Section 3 introduces our
declarative language for evolving the data and its structure. In Sec-
tion 4, we define an abstract and generic NoSQL database program-
ming language for accessing NoSQL data stores. The operations of
our language are available in many popular NoSQL systems. With
this formal basis, we can implement our schema evolution opera-
tions eagerly, see Section 5. Alternatively, schema evolution can be
handled lazily. We sketch the capabilities of object mappers that
allow lazy migration in Section 6. In Section 7, we discuss related
work on schema evolution in relational databases, XML applica-
tions, and NoSQL data stores. We then conclude with a summary
and an outlook on our future work.

2. NoSQL Data Stores
We focus on NoSQL data stores hosted in a cloud environment.
Typically, such systems scale to large amounts of data, and are
schema-less or schema-flexible. We begin with a categorization of
popular systems, discussing their commonalities and differences.

We then point out the NoSQL data stores that we consider in
this paper with their core characteristics. In doing so, we generalize
from proprietary details and introduce a common terminology.

2.1 State of the art
NoSQL data stores vary hugely in terms of data model, query
model, scalability, architecture, and persistence design. Several tax-
onomies for NoSQL data stores have been proposed. Since we fo-
cus on schema evolution, a categorization of systems by data model
is most natural for our purposes. We thus resort to a (very common)
classification [8, 34] into (1) key-value stores, (2) document stores,
and (3) extensible record stores. Often, extensible record stores are
also called wide column stores or column family stores.

(1) Key-value stores. Systems like Redis [30, Chapter 8] or
Riak [4] store data in pairs of a unique key and a value. Key-
value stores do not manage the structure of these values. There
is no concept of schema beyond distinguishing keys and values.
Accordingly, the query model is very basic: Only inserts, updates,
and deletes by key are supported, yet no query predicates on val-
ues. Since key-value stores do not manage the schema of values,
schema evolution is the responsibility of the application.

(2) Document stores. Systems such as MongoDB [10] or Couch-
base [7] also store key-value pairs. However, they store “docu-
ments” in the value part. The term “document” connotes loosely
structured sets of name-value pairs, typically in JSON (JavaScript
Object Notation) format or the binary representation BSON, a more
type-rich format of JSON. Name-value pairs represent the proper-
ties of data objects. Names are unique, and name-value pairs are
sometimes even referred to as key-value pairs. The document for-
mat is hierarchical, so values may be scalar, lists, or even nested
documents. Documents within the same document store may differ
in their structure, since there is no fixed schema.

Queries in document stores are more expressive than in key-
value stores. Apart from inserting, updating, and deleting doc-
uments based on the document key, we may query documents
based on their properties. The query languages differ from system
to system. Some systems, such as MongoDB, have an integrated
query language for ad-hoc queries, whereas other systems, such as
CouchDB [30, Chapter 6] and Couchbase, do not. There, the user
predefines views in form of MapReduce functions [12, 34].

An interesting and orthogonal point is the behavior in evaluating
predicate queries: When a document does not contain a property
mentioned in a query predicate, then this property is not even
considered in query evaluation.

Document stores are schema-less, so documents may effort-
lessly evolve in structure: Properties can be added or removed from
a particular document without affecting the remaining documents.
Typically, there is no schema definition language that would al-
low the application developer to manage the structure of documents
globally, across all documents.

(3) Extensible record stores. Extensible record stores such as
BigTable [9] or HBase [13] actually provide a loosely defined
schema. Data is stored as records. A schema defines families of
properties, and new properties can be added within a property fam-
ily on a per-record basis. (Properties and property families are of-
ten also referred to as columns and column families.) Typically, the
schema cannot be defined up front and extensible record stores al-
low the ad-hoc creation of new properties. However, properties can-
not be renamed or easily re-assigned from one property family to
the other. So certain challenges from schema evolution in relational
database systems carry over to extensible record stores.

Google Datastore [15] is built on top of Megastore [3] and
BigTable, and is very flexible and comfortable to use. For instance,
it very effectively implements multitenancy for all its users.



The Cassandra system [1] is an exception among extensible
record stores, since it is much more restrictive regarding schema.
Properties are actually defined up front, even with a “CREATE
TABLE” statement, and the schema is altered globally with an
“ALTER TABLE” statement. So while Cassandra is an extensible
record store [8, 34], it is not schema-less or schema-flexible. In this
work, we will exclusively consider schema-less data stores.

A word on NULL values. The handling of NULL values in
NoSQL data stores deserves attention, as the treatment of unknown
values is a factor in schema evolution. In relational database sys-
tems, NULL values represent unknown information, and are pro-
cessed with a three-valued logic in query evaluation. Yet in NoSQL
data stores, there is no common notion of NULLs across systems:

• Some systems follow the same semantics of NULL values as
relational databases, e.g. [10].

• Some systems allow for NULL values to be stored, but do not
allow NULLs in query predicates, e.g. [1, 15].

• Some systems do not allow NULL values at all, e.g. [13],
arguing that NULL values only waste storage.

While there is no common strategy on handling unknown values
yet, the discussion is ongoing and lively. Obviously, there is a
semantic difference between a property value that is not known
(such as the first name for a particular user), and a property value
that does not exist for a variant of an entity (since home addresses
and business addresses are structured differently). Consequently,
some NoSQL data stores which formerly did not support NULL
values have introduced them in later releases [11, 30, Chapter 6].

In Section 4, we present a generic NoSQL data store program-
ming language. As the approaches to handling NULL values are so
manifold, we choose to disregard NULLs as values and in queries,
until a consensus has been established among NoSQL data stores.

2.2 NoSQL Data Stores in Scope for this Paper
In this paper, we investigate schema evolution for feature-rich,
interactive web applications that are backed by NoSQL data stores.
This makes document stores and schema-less extensible record
stores our primary platforms of interest. Since key-value stores do
not know any schema apart from distinguishing keys and values,
we believe they are not the technology of choice for our purposes;
after all, one cannot even run the most basic predicate queries, e.g.
to find all blogs posted within the last ten hours.

We assume a high-level, abstract view on document stores and
extensible record stores and introduce our terminology. Our ter-
minology takes after Google Datastore [15]. We also state our as-
sumptions on the data and query model.

Data model. Objects stored in the NoSQL data store are called
entities. Each entity belongs to a kind, which is a name given to
groups of semantically similar objects. Queries can then be spec-
ified over all entities of the same kind. Each entity has a unique
key, which consists of the entity kind and an id. Entities have sev-
eral properties (corresponding to attributes in the relational world).
Each entity property consists of a name and a value. Properties may
be scalar, they may be multi-valued, or consist of nested entities.

Query model. Entities can be inserted and deleted based on their
key. We can formulate queries against all entities of a kind. At the
very least, we assume that a NoSQL data store supports conjunctive
queries with equality comparisons. This functionality is commonly
provided by document stores and extensible record stores alike.

Freedom of schema. We assume that the global structure of enti-
ties cannot be fixed in advance. The structure of a single entity can
be changed any time, according to the developers’ needs.

evolutionop ::= add | delete | rename | move | copy;

add ::= "add" property "=" value [selection];
delete ::= "delete" property [selection];
rename ::= "rename" property "to" pname [selection];
move ::= "move" property "to" kname [complexcond];
copy ::= "copy" property "to" kname [complexcond];

selection ::= "where" conds;
complexcond ::= "where" (joincond | conds

| (joincond "and" conds));
joincond ::= property "=" property;
conds ::= cond {"and" cond};
cond ::= property "=" value;

property ::= kname "." pname;
kname ::= identifier;
pname ::= identifier;

Figure 2. EBNF of the NoSQL schema evolution language.

Example 1. The blogging application example from the Introduc-
tion is coherent with this terminology and these assumptions. 2

3. A NoSQL Schema Evolution Language
In schema-less NoSQL data stores, there is no explicit, global
schema. Yet when we are building feature-rich, interactive web
applications on top of NoSQL data stores, entities actually do
display an implicit structure (or schema); this structure manifests
in the entity kind and entity property names. This especially holds
when object mappers take over the mundane task of marshalling
objects from the application space into persisted entities, and back.
These object mappers commonly map class names to entity kinds,
and class members to entity properties. (We discuss object mappers
further in the context of related work in Section 7.)

Thus, there is a large class of applications that use NoSQL
data stores, where the data is somewhat consistently structured,
but has no fixed schema in the relational sense. Moreover, in an
agile setting, these are applications that evolve rapidly, both in
their features and their data. Under these assumptions, we now
define a compact set of declarative schema migration operations,
that have been inspired by schema evolution in relational databases,
and update operations for semi-structured data [31]. While we can
only argue empirically, having read through discussions in various
developer forums, we are confident that these operations cover a
large share of the common schema migration tasks.

Figure 2 shows the syntax of our NoSQL schema evolution
language in Extended Backus-Naur Form (EBNF). An evolution
operation adds, deletes, or renames properties. Properties can also
be moved or copied. Operations may contain conditionals, even
joins. The property kinds (derived from kname) and the property
names (pname) are the terminals in this grammar. We will formally
specify the semantics for our operations in Section 5. For now, we
discuss some examples to develop an intuition for this language.

We introduce a special-purpose numeric property “version” for
all entities. The version is incremented each time an entity is pro-
cessed by an evolution operator. This allows us to manage heteroge-
neous entities of the same kind. This is an established development
practice in entity evolution.
We begin with operations that affect all entities of one kind:
• The add operation adds a property to all entities of a given kind.

A default value may be specified (see Example 2).
• The delete operation removes a property from all entities of a

given kind (see Example 3).



• The rename operation changes the name of a property for all
entities of a given kind (see Example 4).

Example 2. Below, we show an entity from our blogpost example
before and after applying operation add blogpost.likes = 0. This
adds a likes-counter to all blogposts, initialized to zero. We chose a
compact tabular representation of entities and their properties.

key (blogpost, 331175)
title NoSQL Data..
content NoSQL databases ..
version 1

key (blogpost, 331175)
title NoSQL Data..
content NoSQL databases..
likes 0
version 2 2

Example 3. The operation delete blogpost.url deletes the property
“url” from all blogposts.

key (blogpost, 331175)
title NoSQL Data..
content NoSQL databases ..
url www.mypage.com
version 1

key (blogpost, 331175)
title NoSQL Data..
content NoSQL databases..
version 2

We can also specify a selection predicate. For instance, delete
blogpost.url where blogpost.version = 1 deletes the url-property
only from those blogposts that are at schema version 1. 2

Example 4. rename blogpost.text to content renames the prop-
erty “text” to “content” for all blogpost entities.

key (blogpost, 331175)
title NoSQL Data..
text NoSQL databases..
version 1

key (blogpost, 331175)
title NoSQL Data..
content NoSQL databases..
version 2 2

We define further operations that affect two kinds of entities.
Such migration operations are not available in schema definition
languages for relational databases. Yet since NoSQL data stores
typically do not support joins, denormalization is a technique heav-
ily relied upon. When building interactive web applications, re-
sponsiveness is key, which usually forbids programmatic joins in
the application. Instead, one would reorganize that data such that
it renders joins unnecessary. Thus, duplication and denormaliza-
tion are first-class citizens when building applications on top of
NoSQL data stores. Accordingly, we introduce dedicated opera-
tions for supporting these schema refactorings.
• The move operation moves a property from one entity-kind to

another entity-kind (see Example 5).
• The copy operation copies a property from one entity-kind to

another entity-kind (see Example 6).
Of course, in moving and copying we also compute joins. Yet this
is done in offline batch processing, and not during time-critical
interactions with users.

Example 5. To move the property “url” from users to all their blog-
posts, we specify the operation move user.url to blogpost where
user.name = blogpost.author. Figure 3 shows its application to a
blog by user Gerhard. 2

Example 6. The next example shows the copy operation: The
property “email” is copied from users to all their blogposts: copy
user.email to blogpost where user.name = blogpost.author. Fig-
ure 4 shows its application to a blog by user Gerhard. The copy
operation does not change the user entities. 2

Section 5 formalizes the semantics and investigates the effort
of our migration operations. As a prerequisite, we next introduce a
generic NoSQL database programming language.

key (user, 1234)
name Gerhard
email gerhard@acm.org
status professional
url http://bigdata.org
version 1

key (user, 1234)
name Gerhard
email gerhard@acm.org
status professional
version 2

key (blogpost, 331175)
title NoSQL Data ..
content NoSQL databases..
author Gerhard
version 1

key (blogpost, 331175)
title NoSQL Data..
content NoSQL databases..
author Gerhard
url http://bigdata.org
version 2

Figure 3. Moving property “url” (c.f. Example 5).

key (user, 1234)
name Gerhard
email gerhard@acm.org
status professional
version 1

key (user, 1234)
name Gerhard
email gerhard@acm.org
status professional
version 1

key (blogpost, 331175)
title NoSQL Data ..
content NoSQL databases ..
author Gerhard
version 1

key (blogpost, 331175)
title NoSQL Data ..
content NoSQL databases ..
author Gerhard
email gerhard@acm.org
version 2

Figure 4. Copying property “email” (c.f. Example 6).

4. A NoSQL Database Programming Language
Relational databases come with a query language capable of joins,
as well as dedicated data definition and data manipulation lan-
guage. Yet in programming against NoSQL data stores, the ap-
plication logic needs to take over some of these responsibilities.
We now define the typical operations on entities in NoSQL data
stores, building a purposeful NoSQL database programming lan-
guage. Our language is particularly modeled after the interfaces
to Google Datastore [15], and is applicable to document stores
(e.g. [7]) as well as schema-less extensible record stores (e.g. [13]).

We consider system architectures such as shown in Figure 1.
Each user interacts with an instance of the application, e.g. a
servlet. Typically, the application fetches entities from the data
store into the application space, modifies them, and writes them
back to the data store. We introduce a common abstraction from
the current state of the data store and the objects available in the
application space. We refer to this abstraction as the memory state.

The memory state. We model a memory state as a set of map-
pings from entity keys to entity values. Let us assume that an en-
tity has key κ and value ϑ. Then the memory contains the map-
ping from this key to this value: κ 7→ ϑ. Keys in a mapping are
unique, so a memory state does not contain any mappings κ 7→ ϑ1

and κ 7→ ϑ2 with ϑ1 6= ϑ2.
The entity value itself is structured as a mapping from property

names to property values. A property value may be from an atomic
domain Dom, either single-valued (Dom) or multi-valued (Dom+),
or it may consist of the properties of a nested entity.

Example 7. We model a memory state with a single entity manag-
ing user data. The key is a tuple of kind user and the id 42. The en-
tity value contains the user’s login “hhiker” and password “galaxy”:
{(“user”, 42) 7→ {login 7→ “hhiker”, pwd 7→ “galaxy”}}. 2



Substitutions. We describe manipulations of a memory state by
substitutions. A substitution σ is a mapping from a set K (e.g.
the entity keys) to a set V (e.g. the entity values) and the special
symbol ⊥. To access ϑi in a substitution {κ1 7→ ϑ1, . . . , κn 7→
ϑn}, we write σ(κi). If σ(κi) = ⊥, then this explicitly means that
this mapping is not defined.

Let ms be the memory state, and let σ be a substitution. In
updating the memory state ms by substitution σ, we follow a create-
or-replace philosophy for each mapping in the substitution. We
denote the updated memory by ms[σ]:

ms[σ] =
⋃
m∈ms

(m[σ]).

Let a, b ∈ K, and let v, w ∈ V ∪ {⊥}. Then

{a 7→ v}[σ] =
⋃

{b 7→w}∈σ

({a 7→ v}[{b 7→ w}])

{a 7→ v}[{b 7→ w}] =
{
{b 7→ w} a = b
{a 7→ v, b 7→ w} otherwise

We further use the shortform ms[κ 7→ ϑ] to abbreviate the
substitution with a single mapping ms[{κ 7→ ϑ}].
Example 8. We continue with Example 7 and abbreviate the
key (“user”, 42) by k. To delete the user’s account, we update
the memory state as

{k 7→ {login 7→ “hhiker”, pwd 7→ “galaxy”}}[k 7→ ⊥]
= {k 7→ ⊥}.

To mark the account as expired (state “x”), we write

{k 7→ ({login 7→ “hhiker”, pwd 7→ “galaxy”}[state 7→ “x”])}
= {k 7→ {login 7→ “hhiker”, pwd 7→ “galaxy”, state 7→ “x”}}.

To change the user’s password to “g2g”, we write

{k 7→ ({login 7→ “hhiker”, pwd 7→ “galaxy”}[pwd 7→ “g2g”])}
= {k 7→ {login 7→ “hhiker”, pwd 7→ “g2g”}}.

2Evaluating operations. Operations may change the state of the
data store and the application space. We call the former the data
store state, and call the latter the application state. We denote the
impact of operations by rules of the form

JopK(ds, as) = (ds′, as′)

where op denotes the operation to be executed on the data store
state ds and the application state as. By evaluating the operation,
the data store state changes to ds′, and the application state to as′.
Operations may be executed in sequence, which we define as

Jop1; op2K(ds, as) = Jop2K
(
Jop1K(ds, as)

)
.

4.1 Manipulating Entities
We next formalize operations common to most NoSQL data stores,
namely creating and persisting entities, as well as retrieving and
deleting single entities. Figure 5 defines our operations. Let Kind
be the set of entity kinds. Let Id be a set denoting identifiers. The
set of entity keys is defined as Keys = Kind× Id, i.e. an entity key
is a tuple of the kind and an identifier. Entity properties are named.
Let Names be the set of property names. A property value can be
either an atomic value from domain Dom, multi-valued (i.e. from
Dom+), or a nested entity.

Creating entities. We start with the rules to create entities and
their properties. They affect the application state only. (For a
change to have lasting effect, the entity must be persisted.) Rule 1
creates a new entity with key κ. Initially, an entity does not have
any properties. To also set initial properties, we can use rule 2.

Rule 3 adds a new property with name n and value v to the entity
with key κ. Adding a nested entity as a property is specified in
Rule 4. Rule 5 removes the property with name n from the entity
with key κ: By setting the property value to⊥, the property by that
name is no longer defined.

Persisting entities. Rule 6 persists the entity with key κ, repli-
cating this entity to the data store state. The put-operation replaces
any entity by the same key, should one exist. Rule 7 deletes the en-
tity with key κ from the data store state. With rule 8, we retrieve a
particular entity by key from the data store state.

Example 9. The following sequence of operations creates the
entity from Example 7 and persists it in the data store.

1© new
(
(“user”, 42)

)
;

2© setProperty
(
(“user”, 42), login, “hhiker”

)
;

3© setProperty
(
(“user”, 42), pwd, “galaxy”

)
;

4© put
(
(“user”, 42)

)
We evaluate the operations one by one on the initially empty data
store and application state:

(∅, ∅) 1©→ (∅, {(“user”, 42) 7→ ∅})
2©→ (∅, {(“user”, 42) 7→ {login 7→ “hhiker”}})
3©→ (∅, {(“user”, 42) 7→ {login 7→ “hhiker”, pwd 7→ “galaxy”}})
4©→ ({(“user”, 42) 7→ {login 7→ “hhiker”, pwd 7→ “galaxy”}},
{(“user”, 42) 7→ {login 7→ “hhiker”, pwd 7→ “galaxy”}}) 2

Accessing entity values. To access a particular value of an entity,
we introduce a dedicated operation. We consider all variables as in
Figure 5, with v being a property value. If such a value exists, v is
either in Dom+ or a set of properties (from a nested entity):

JgetProperty(κ, n)K(ds, as ∪ {κ 7→ ({n 7→ v} ∪ π)}) = v.

If property n is not defined for the entity with key κ, call-
ing getProperty(κ, n) yields ⊥.

Example 10. We illustrate nesting and unnesting of entities in
close accordance with existing APIs (c.f. [15]). Let κ be the key of
an entity with a nested entity as property n. To add a further prop-
erty m with value w to the nested entity, we unnest property n into
a temporary entity. Let tmp be a new entity key. After modification
and re-nesting, we can persist the changes.

get(κ);
new(tmp, getProperty(κ, n)); // unnesting
setProperty(tmp, m, w);
setProperty(κ, n, tmp); // nesting
put(κ) 2

4.2 Queries
Given an entity key κ, we define the function kind(κ) such that it
returns the kind of this entity. Then rule 9 retrieves all entities from
the store that are of the specified kind c.

In addition to querying for a particular kind, we can also query
with a predicate θ, as described by rule 10. We consider conjunc-
tive queries, with equality as the only comparison operator. This
type of queries is typically supported by all of today’s NoSQL data
stores. Various systems may even have more expressive query lan-
guages (e.g. with additional comparison operators and support for
disjunctive queries, yet typically no join).

More precisely, θ is a conjunctive query over atoms of the form
n = v where n is a property name and v is a property value
from Dom. The predicate θ is evaluated on one entity at-a-time.



Let ds and as be a data store state and an application state. Let κ, κ′ be entity keys. Let n, n′ be property names, and let v be a property
value. The symbol ⊥ denotes the undefined value. Let π, π′ be properties, i.e. a set of mappings from property names to property values.
kind : Keys 7→ Kind is a function that extracts the entity kind from a key. θ is a conjunctive query, and c is a string constant.

Jnew(κ)K(ds, as) = (ds, as[κ 7→ ∅]) (1)

Jnew(κ, π)K(ds, as) = (ds, as[κ 7→ π]) (2)

JsetProperty(κ, n, v)K(ds, as ∪ {κ 7→ π}) = (ds, as ∪ {κ 7→ (π[n 7→ v])}) (3)

JsetProperty(κ, n, κ′)K(ds, as ∪ {κ 7→ π} ∪ {κ′ 7→ π′}) = (ds, as ∪ {κ 7→ (π[n 7→ π′])} ∪ {κ′ 7→ π′}) (4)

JremoveProperty(κ, n)K(ds, as ∪ {κ 7→ π}) = (ds, as ∪ {κ 7→ (π[n 7→ ⊥])}) (5)

Jput(κ)K(ds, as ∪ {κ 7→ π}) = (ds[κ 7→ π], as ∪ {κ 7→ π}) (6)

Jdelete(κ)K(ds, as) = (ds[κ 7→ ⊥], as) (7)

Jget(κ)K(ds ∪ {κ 7→ π}, as) = (ds ∪ {κ 7→ π}, as[κ 7→ π]) (8)

Jget(kind = c)K(ds, as) = (ds, as[{κ 7→ π | κ 7→ π ∈ ds ∧ kind(κ) = c}]) (9)

Jget(kind = c ∧ θ)K(ds, as) = (ds, as[{κ 7→ π | κ 7→ π ∈ ds ∧ kind(κ) = c ∧ JθK(κ 7→ π)}]) (10)

Figure 5. Operations for creating, manipulating, and persisting entities, as well as queries over entities.

We evaluate an atom κ.n = v on a single entity:

Jn = vK(κ 7→ π) =

 true (n 7→ v) ∈ π
true (n 7→ ϑ) ∈ π, ϑ ∈ Dom+, v ∈ ϑ
false otherwise

An atom involving ⊥ as an operand is always evaluated to false.
Queries over nested entities are not supported, e.g. as in [15]. The
evaluation of conjunctions follows naturally:

Jθ1 ∧ θ2K(κ 7→ π) = Jθ1K(κ 7→ π) ∧ Jθ2K(κ 7→ π)

4.3 Iteration Statements
For batch updates on entities, we define a for-loop. Let x be a
variable denoting an entity key, and let op denote an operation from
our NoSQL database programming language. θ is a conjunctive
query with atomic equality conditions. The operands in atoms are
of the form x, x.n, or v, where x is a variable denoting a key, n is
a property name, and v is a value from Dom.

We consider the execution of for-loops on a data store state ds
and an application state as:

Jforeach x in get(θ) do op od K(ds, as)

Let asθ be the result of evaluating query θ, i.e.

Jget(θ)K(ds, ∅) = (ds, asθ)

and let K = {κ | (κ 7→ π) ∈ asθ} be the keys of all entities in the
query result. We can then evaluate the for-loop as follows.

while (K 6= ∅) do
there exists some key κ in K;
K := K \ {κ};
evaluate operation op for the binding of x to key κ:
(ds, as) := J op[x/κ] K(ds, as);

od

Above, op[x/κ] is obtained from operation op by first substituting
each occurrence of x in op by κ, and next replacing all operands
κ.n in query predicates by the value of “getProperty(κ, n)”.

Example 11. We add a new property “email” to all user entities in
the data store, and initialize it with the empty string ε.

foreach x in get(kind = “user”) do
setProperty(x, email, ε);
put(x)

od

Since denormalization is vital for performance in NoSQL data
stores, we show how to copy the property “url” from each user
entity to all blogposts written by that user.

foreach u in get(kind = “user”) do
foreach b in get(kind = “blogpost” ∧ author = u.login) do

setProperty(b, url, getProperty(u, url));
put(b)

od
od 2

5. Safe and Eager Migration
Now that we have a generic NoSQL database programming lan-
guage, we can implement the declarative schema evolution opera-
tions from Section 3. We believe the declarative operations cover
common schema evolution tasks. For more complex migration sce-
narios, we can always resort to a programmatic solution. This
matches the situation with relational databases, where an “ALTER
TABLE” statement covers the typical schema alterations, but where
more complex transformations require an ETL-process to be set up,
or a custom migration script to be coded.

Figure 6 shows the implementation for the operations add,
delete, and rename. A for-loop fetches all matching entities from
the data store, modifies them, and updates their version property (as
introduced in Section 3). The updated entities are then persisted.

Figure 7 shows the implementation for copy and move. Again,
entities are fetched from the NoSQL data store one by one, updated,
and then persisted. This requires joins between entities. Since joins
are not supported in most NoSQL data stores, they need to be
encoded in the application logic.

This batch update corresponds to the recommendation of NoSQL
data store providers on how to handle schema evolution (e.g. [23]).

Note that the create-or-replace semantics inherent in our NoSQL
database programming language make for a well-defined behav-
ior of operations. For instance, renaming the property “text” in
blogposts to “content” (c.f. Example 4) effectively overwrites any
existing property named content.

Moreover, the version property added to all entities makes the
migration robust in case of interruptions. NoSQL data stores com-
monly offer very limited transaction support. For instance, Google
Datastore only allows transactions to span up to five entities in so-
called cross-group transactions (or alternatively, provides the con-
cept of entity groups not supported in our NoSQL database pro-



Legend: Let c be a kind, let n be a property name, and let v be a
property value from Dom. θ is a conjunctive query over properties.

add c.n = v where θ
foreach e in get(kind = c ∧ θ) do

setProperty(e, n, v);
setProperty(e, version, getProperty(e, version) +1);
put(e)

od

delete c.n where θ

foreach e in get(kind = c ∧ θ) do
removeProperty(e, n);
setProperty(e, version, getProperty(e, version) +1);
put(e)

od

rename c.n to m where θ

foreach e in get(kind = c ∧ θ) do
setProperty(e, m, getProperty(e, n));
removeProperty(e, n);
setProperty(e, version, getProperty(e, version) +1);
put(e)

od

Figure 6. Implementing add, delete, and rename.

gramming language) [15]. So a large-scale migration cannot be per-
formed as an atomic action. By restricting migrations to all entities
of a particular version (using the where-clause), we may correctly
recover from interrupts, even for move and copy operations.

Interestingly, not all migrations that can be specified are desir-
able. For instance, assuming a 1:N relationship between users and
the blogposts they have written, the result of the migration

copy user.url to blogpost where user.login = blogpost.author

does not depend on the order in which blogpost entities are up-
dated. However, if there is an N:M relationship between users and
blogposts, e.g. since we specify the copy operation as cross product
between all users and all blogposts,

copy user.url to blogpost

then the execution order influences the migration result. Naturally,
we want to be able to know whether a migration is safe before
we execute it. Concretely, we say a migration is safe if it does not
produce more than one entity with the same key.

The following propositions follow from the implementations of
schema evolution operators in Figures 6 and 7.

Proposition 1. An add, delete, or rename operation is safe.

Proposition 2. For a move or copy operation, and a data store
state ds, the safety of executing the operation on ds can be decided
in O(|ds|2).

Deciding whether a copy or move operation is safe can be done
in a simulation run of the evolution operator. If an entity has already
been updated in such a “dry-run” and is to be overwritten with
different property values, then the migration is not safe.

In relational data exchange, the existence of solutions for re-
lational mappings under constraints is a highly related problem.
There, it can be shown that while the existence of solutions is an
undecidable problem per-se, for certain restrictions, the problem
is PTIME-decidable (c.f. Corollary 2.15 in [2]). Moreover, the ve-
hicle for checking for solutions is the chase algorithm, which fails
when equality-generating dependencies in the target schema are vi-
olated. This is essentially the same idea as our dry-run producing

Legend: Let c1, c2 be kinds and let n be a property name.
Conditions θ1 and θ2 are conjunctive queries. θ1 has atoms of the
form c1.m = v, where m is a property name and v is a value from
Dom. θ2 has atoms of the form c2.m = v or c1.a = c2.b, where
a, b, and m are property names. v is a value from Dom.

move c1.n to c2 where θ1 ∧ θ2
foreach e in get(kind = c1 ∧ θ1) do

foreach f in get(kind = c2 ∧ θ2) do
setProperty(f , n, getProperty(e, n));
setProperty(f , version, getProperty(f , version) +1);
put(f )

od;
setProperty(e, version, getProperty(e, version) +1);
removeProperty(e, n);
put(e)

od

copy c1.n to c2 where θ1 ∧ θ1
foreach e in get(kind = c1 ∧ θ1) do

foreach f in get(kind = c2 ∧ θ2) do
setProperty(f , n, getProperty(e, n));
setProperty(f , version, getProperty(f , version) +1);
put(f )

od
od

Figure 7. Implementing copy and move.

entities with the same key, but conflicting values. Since our schema
evolution operations copy and move require two nested for-loops,
we can check for safety in quadratic time. (Keeping track of which
entities have already been updated can be done efficiently, e.g. by
maintaining a bit vector in the size of ds.)

6. An Outlook on Lazy Migration
Our NoSQL database programming language can also express op-
erations for lazy migration. To illustrate this on an intuitive level,
we encode some features of the Objectify object mapper [27].

We will make use of some self-explanatory additional language
constructs, such as if-statements and local variables. Additionally,
we assume an operation “hasProperty(κ, n)” that tests whether the
entity with key κ in the application state has a property by name n.

Example 12. The following example is adapted from the Objectify
documentation. It illustrates how properties are renamed when an
entity is loaded from the data store and translated into a Java object.

The Java class Person is mapped to an entity. The annota-
tion @Idmarks the identifier for this entity, the entity kind is derived
from the class name. The earlier version of this entity has a prop-
erty “name”, which is now renamed to “fullName”. Legacy entities
do not yet have the property “fullName”. When they are loaded,
the object mapper assigns the value of property “name” to the class
attribute “fullName”. The next time that the entity is persisted, its
new version will be stored.

public class Person {
@Id Long id;
@AlsoLoad("name") String fullName;

}

In our NoSQL database programming language, we implement the
annotation @AlsoLoad as follows.

Key p := (“Person”, id);
if hasProperty(p, name) do



setProperty(p, fullName, getProperty(p, name));
removeProperty(p, name)

od 2

Example 13. The following example is adapted from [27]. The
annotation @OnLoad specifies the migration for an entity when it is
loaded. If the entity has properties street and city, these properties
are moved to a new entity storing the address. These properties are
then discarded from the person entity when it is persisted (specified
by the annotation @IgnoreSave). Saving an entity is done by
calling the Objectify function ofy().save().

public class Person {
@Id Long id;
@IgnoreSave String street;
@IgnoreSave String city;

@OnLoad void onLoad() {
if (this.street != null && this.city != null) {

Entity a = new Entity("address");
a.setProperty("person", this.id);
a.setProperty("street", this.street);
a.setProperty("city", this.city);
ofy().save().entity(a);

}
}

}

We implement the method with annotation @OnLoad as follows.

Key p := (“Person”, id);
if ( hasProperty(p, street) ∧ hasProperty(p, city) ) do

Key a = (“Address”, id);
new(a);
setProperty(a, person, id);
setProperty(a, street, getProperty(p, street));
setProperty(a, city, getProperty(p, city));
put(a);
removeProperty(p, street);
removeProperty(p, city);

od 2

It remains future work to explore lazy migrations in greater de-
tail, and develop mechanisms to statically check them prior to ex-
ecution: The perils of using such powerful features in an uncon-
trolled manner, on production data, are evident. Lazy migration is
particularly difficult to test prior to launch, since we cannot fore-
tell which entities will be touched at runtime. After all, users may
return after years and re-activate their accounts, upon which the
object mapper tries to evolve ancient data.

It is easy to imagine scenarios where lazy migration fails, due to
artifacts in the entity structure that developers are no longer aware
of. In particular, we would like to be able to determine whether an
annotation for lazy migration is safe. At the very least, we would
like to check whether a lazy migration is idempotent, so that when
transactions involving evolutions fail, there is no harm done in re-
applying the migration.

7. Related Work
We define a NoSQL database programming language as an abstract
interface for programming against NoSQL data stores. In recent
work, [5] present a calculus for NoSQL systems together with its
formal semantics. They introduce a Turing-complete language and
its type system, while we present a much more restricted language
with a focus on updates and schema evolution.

For relational databases, the importance of designing database
programming languages for strong programmability, concerning
both performance and usability, has been emphasized in [19]. The

language presented there can express database operators, query
plans, and also capture operations in the application logic. How-
ever, the work there is targeted at query execution in relational
databases, while we cover aspects of data definition and data ma-
nipulation in NoSQL data stores. Moreover, we treat the data store
itself as a black box, assuming that developers use a cloud-based
database-as-a-service offering that they cannot manipulate.

All successful applications age with time [29], and eventually
require maintenance or evolution. Typically, there are two alter-
natives to handling this problem on the level of schema: Schema
versioning and schema evolution. Relational databases have an es-
tablished language for schema evolution (“ALTER TABLE”). This
schema definition language is part of the SQL standard, and is im-
plemented by all available relational databases systems.

For evolving XML-based applications, research prototypes have
been built that concentrate on the co-evolution of XML schemas
and the associated XML documents [18]. The authors of [25] have
developed a model driven approach for XML schema design, and
support co-evolution between different abstraction levels. A dedi-
cated language for XML evolution is introduced in [26] that for-
malizes XML schema change operations and describes the corre-
sponding updates of associated XML documents.

JSONiq is a quite new query language for JSON documents, the
first version was published in April 2013 [32]. Future versions of
JSONiq will contain an update facility and will offer operations to
add, delete, insert, rename, and replace properties and values. Our
schema evolution language can be translated into corresponding
update expressions. If JSONiq establishes itself as a standard for
querying and updating NoSQL datastores, we can also base our
schema evolution method on this language.

The question whether an evolution is safe corresponds to the
existence of (universal) solutions in data exchange. In particular,
established practices from XML data exchange, using regular tree
grammars to specify the source and the target schema [2], are
highly relevant to our work. The use of object mappers translating
objects from the application space into persisted entities can be
seen as a form of schema specification. This raises an interesting
question: Provided that all entities conform to the class hierarchy
specified by an object mapper, if we evolve entities, will they still
work with our object mapper? This boils down to checking for
absolute consistency in XML data exchange [2], and is a current
topic in database theory (e.g. [6]). It is therefore part of our plans to
see how we can leverage the latest research on XML data exchange
for evolving data in schema-less data stores.

There are various object-relational mapping (ORM) frame-
works fulfilling well established standards such as the Java Per-
sistence API (JPA), and supporting almost all relational database
systems. Some ORM mappers are even supported by NoSQL data
stores, of course not implementing all features, since joins or
foreign-keys are not supported by the backend (e.g. see the JPA
and JDO implementations for Google Datastore [16, 17]).

So far, there are only few dedicated mappers for persisting ob-
jects in NoSQL data stores (sometimes called object-data-store
mappers (ODM)). Most of today’s ODMs are proprietary, support-
ing a particular NoSQL data store (e.g. Morphia [24] for Mon-
goDB, or Objectify[28] for Google Datastore). Few systems sup-
port more than one NoSQL data store (e.g. Hibernate OGM [20]).

Today, these objects-to-NoSQL mapping tools have at best rudi-
mentary support for schema evolution. To the best of our knowl-
edge, Objectify and Morphia go the furthest by allowing developers
to specify lazy migration in form of object annotations. However,
we could not yet find any solutions for systematically managing
and expressing schema changes. At this point, the ecosystem of
tools for maintaining NoSQL databases is still within its infancy.



8. Summary and Future Work
This work investigates the maintainability of feature-rich, interac-
tive web applications, from the view-point of schema evolution. In
particular, we target applications that are backed by schema-less
document stores or extensible record stores. This is an increasingly
popular software stack, now that database-as-a-service offerings
are readily available: The programming APIs are easy to use, there
is near to no setup time required, and pricing is reasonable. Another
sweet spot of these systems is that the data’s schema does not have
to be specified in advance. Developers may freely adapt the data’s
structure as the application evolves. Despite utter freedom, the data
nevertheless displays an implicit structure: The application class
hierarchy is typically reflected in the persisted data, since object
mappers perform the mundane task of marshalling data between
the application and the data store.

As an application evolves, so does its schema. Yet schema-
free NoSQL data stores do not yet come with convenient schema
management tools. As of today, virtually all data migration tasks
require custom programming (with the exception of very basic data
inspection tools for manipulating single entities). It is up to the
developers to code the migration of their production data “on foot”,
getting the data ready for the next software release. Worse yet, with
weekly releases, the schema evolves just as frequently.

In this paper, we lay the foundation for systematically managing
schema evolution in this setting. We define a declarative NoSQL
schema evolution language, to be used in a NoSQL data store
administration console. Using our evolution language, developers
can specify common operations, such as adding, deleting, or re-
naming properties in batch. Moreover, properties can be moved or
copied, since data duplication and denormalization are fundamental
in NoSQL data stores. We emphasize that we do not mean to en-
force a relational schema onto NoSQL data stores. Rather, we want
to ease the pain of schema evolution for application developers.

We regard it as one of our key contributions that our operations
can be implemented for a large class of NoSQL data stores. We
show this by an implementation in a generic NoSQL database pro-
gramming language. We also discuss which operations can be ap-
plied safely, since non-deterministic migrations are unacceptable.

Future work. Our NoSQL schema evolution language specifies
operations that are executed eagerly, on all qualifying entities. An
alternative approach is to migrate entities lazily, the next time they
are fetched into the application space. Some object mappers already
provide such functionality. We believe that lazy evolution is still lit-
tle understood, and at the same time poses great risks when applied
erroneously. We will investigate how our NoSQL schema evolu-
tion language may be implemented both safely and lazily. Ideally,
a dedicated schema evolution management tool would allow devel-
opers to migrate data eagerly for leaps in schema evolution, and to
patch things up lazily for minor changes.

References
[1] Apache Cassandra, 2013. http://cassandra.apache.org/.

[2] M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Relational and XML
Data Exchange. Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2010.

[3] J. Baker, C. Bond, J. C. Corbett, J. Furman, et al. “Megastore: Provid-
ing Scalable, Highly Available Storage for Interactive Services”. In
Proc. CIDR, pages 223–234, 2011.

[4] Basho Technologies. riak/docs, 2013. http://docs.basho.com/
riak/latest/.

[5] V. Benzaken, G. Castagna, K. Nguyen, and J. Siméon. “Static and
dynamic semantics of NoSQL languages”. In Proc. POPL, pages 101–
114, 2013.

[6] M. Bojańczyk, L. A. Kolodziejczyk, and F. Murlak. “Solutions in
XML data exchange”. In Proc. ICDT, pages 102–113, 2011.

[7] M. Brown. Developing with Couchbase Server. O’Reilly, 2013.
[8] R. Cattell. “Scalable SQL and NoSQL data stores”. SIGMOD Record,

39(4):12–27, 2010.
[9] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, et al. “Bigtable: A

Distributed Storage System for Structured Data”. In Proc. OSDI,
pages 205–218, 2006.

[10] K. Chodorow. MongoDB: The Definitive Guide. O’Reilly, 2013.
[11] Couch Potato, 2010. https://github.com/langalex/couch_

potato/issues/14.
[12] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing

on Large Clusters”. In Proc. OSDI, pages 137–150, 2004.
[13] L. George. HBase: The Definitive Guide. O’Reilly, 2011.
[14] Google Inc. Google Datastore Admin, 2013. https:

//developers.google.com/appengine/docs/adminconsole/
datastoreconsole.

[15] Google Inc. Google Datastore, 2013. https://developers.
google.com/appengine/docs/java/datastore/.

[16] Google Inc. Using JDO with App Engine, 2013. https:
//developers.google.com/appengine/docs/java/
datastore/jdo/.

[17] Google Inc. Using JPA with App Engine, 2013. https:
//developers.google.com/appengine/docs/java/
datastore/jpa/overview.

[18] G. Guerrini, M. Mesiti, and M. A. Sorrenti. “XML Schema Evolution:
Incremental Validation and Efficient Document Adaptation”. In Proc.
XSym, pages 92–106, 2007.

[19] D. Habich, M. Boehm, M. Thiele, B. Schlegel, U. Fischer, H. Voigt,
and W. Lehner. “Next Generation Database Programming and Execu-
tion Environment”. In Proc. DBPL, 2011.

[20] JBoss Community. Hibernate OGM (Object/Grid Mapper), 2013.
http://www.hibernate.org/subprojects/ogm.html.

[21] JSON.org. Introducing JSON, 2013. http://www.json.org/.
[22] S. Lightstone. Making it Big in Software. Prentice Hall, 2010.
[23] J. McWilliams and M. Ivey. Google Developers: Updating your

model’s schema, 2012. https://developers.google.com/
appengine/articles/update_schema.

[24] Morphia. A type-safe java library for MongoDB, 2013. http:
//code.google.com/p/morphia/.

[25] M. Necaský, J. Klı́mek, J. Malý, and I. Mlýnková. “Evolution and
change management of XML-based systems”. Journal of Systems and
Software, 85(3):683–707, 2012.

[26] T. Nösinger, M. Klettke, and A. Heuer. “XML Schema Transforma-
tions - The ELaX Approach”. In Proc. DEXA, 2013.

[27] Objectify AppEngine. Migrating Schemas, 2012. https:
//code.google.com/p/objectify-appengine/wiki/
SchemaMigration.

[28] Objectify AppEngine. The simplest convenient interface to the
Google App Engine datastore, 2013. https://code.google.com/
p/objectify-appengine/.

[29] D. L. Parnas. “Software Aging”. In Proc. ICSE, pages 279–287, 1994.
[30] E. Redmond and J. R. Wilson. Seven Databases in Seven Weeks: A

Guide to Modern Databases and the NoSQL Movement. Pragmatic
Bookshelf, 2012.

[31] J. Robie, D. Chamberlin, M. Dyck, D. Florescu, J. Melton, and
J. Simeon. XQuery Update Facility 1.0, 2011. http://www.w3.
org/TR/xquery-update-10/.

[32] J. Robie, G. Fourny, M. Brantner, D. Florescu, T. Westmann, and
M. Zaharioudakis. JSONiq Grammar - Extensions, 2013. http:
//www.jsoniq.org/grammars/extension.xhtml.

[33] Stack Overflow, 2012. http://stackoverflow.com/questions/
8920610/add-a-new-attribute-to-entity-in-datastore.

[34] S. Tiwari. Professional NoSQL. John Wiley & Sons, 2011.

http://cassandra.apache.org/
http://docs.basho.com/riak/latest/
http://docs.basho.com/riak/latest/
https://github.com/langalex/couch_potato/issues/14
https://github.com/langalex/couch_potato/issues/14
https://developers.google.com/appengine/docs/adminconsole/datastoreconsole
https://developers.google.com/appengine/docs/adminconsole/datastoreconsole
https://developers.google.com/appengine/docs/adminconsole/datastoreconsole
https://developers.google.com/appengine/docs/java/datastore/
https://developers.google.com/appengine/docs/java/datastore/
https://developers.google.com/appengine/docs/java/datastore/jdo/
https://developers.google.com/appengine/docs/java/datastore/jdo/
https://developers.google.com/appengine/docs/java/datastore/jdo/
https://developers.google.com/appengine/docs/java/datastore/jpa/overview
https://developers.google.com/appengine/docs/java/datastore/jpa/overview
https://developers.google.com/appengine/docs/java/datastore/jpa/overview
http://www.hibernate.org/subprojects/ogm.html
http://www.json.org/
https://developers.google.com/appengine/articles/update_schema
https://developers.google.com/appengine/articles/update_schema
http://code.google.com/p/morphia/
http://code.google.com/p/morphia/
https://code.google.com/p/objectify-appengine/wiki/SchemaMigration
https://code.google.com/p/objectify-appengine/wiki/SchemaMigration
https://code.google.com/p/objectify-appengine/wiki/SchemaMigration
https://code.google.com/p/objectify-appengine/
https://code.google.com/p/objectify-appengine/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/
http://www.jsoniq.org/grammars/extension.xhtml
http://www.jsoniq.org/grammars/extension.xhtml
http://stackoverflow.com/questions/8920610/add-a-new-attribute-to-entity-in-datastore
http://stackoverflow.com/questions/8920610/add-a-new-attribute-to-entity-in-datastore

	1 Introduction
	2 NoSQL Data Stores
	2.1 State of the art
	2.2 NoSQL Data Stores in Scope for this Paper

	3 A NoSQL Schema Evolution Language
	4 A NoSQL Database Programming Language
	4.1 Manipulating Entities
	4.2 Queries
	4.3 Iteration Statements

	5 Safe and Eager Migration 
	6 An Outlook on Lazy Migration
	7 Related Work
	8 Summary and Future Work

