
Enabling TRIM Support in SSD RAIDs
Informatik Preprint CS-05-11, ISSN 0944-5900

Department of Computer Science, University of Rostock
September 2011

Nikolaus Jeremic1, Gero Mühl1, Anselm Busse2, and Jan Richling2

1 Architecture of Application Systems Group,
University of Rostock, Germany

{nikolaus.jeremic,gero.muehl}@uni-rostock.de
2 Communication and Operating Systems Group,

Berlin University of Technology, Germany
{abusse,richling}@cs.tu-berlin.de

Abstract. Deploying solid state drives (SSDs) in RAID configurations
can leverage the performance of persistent storage systems into a new
dimension. However, the Achilles’ heel of SSDs and, therefore, also SSD
RAIDs is their write performance, especially for small random requests.
To prevent a degradation of the write throughput, it is important to
maintain an adequate amount of free flash capacity. This can be en-
sured by over-provisioning and additionally encouraged by notifying the
utilized SSDs of storage space no longer required (e.g., because the occu-
pying file was deleted) using the TRIM command. However, many current
hardware and software RAID implementations do not propagate TRIM

commands to their member drives at all and especially not in RAID
setups using parity information to increase the reliability. This leads to
a severe limitation of the intention behind the TRIM command because
parity-based RAIDs are part of many persistent storage systems.
In this report, we discuss the issues of enabling TRIM support in SSD
RAIDs and explain how TRIM can be incorporated into RAID implemen-
tations for commonly used RAID levels.

1 Introduction

A single solid state drive (SSD) can today exhibit a performance that was previ-
ously only possible with a Redundant Array of Independent Disks (RAID) setup
consisting of a bunch of enterprise-class SAS hard disk drives. By deploying
SSDs in RAID configurations, the performance can be elevated to even much
higher levels. SSDs employ NAND-flash memory, whose technological proper-
ties require to perform updates of the stored data out-of-place, meaning that
the new content is stored in another physical part of the memory. This way of
processing data updates necessitates to reclaim the storage capacity occupied by
the outdated data when free storage space is becoming scarce. However, most
filesystems only update their metadata when a file is deleted and do not per-
form further modifications of the allocated storage space until it is reused in



order to store new data. Due to this fact, an SSD will normally have no infor-
mation about which part of its storage space contains obsolete data and could,
therefore, be reclaimed. Consequently, the storage capacity considered to be free
will be smaller than it is, which is unfavorable because the amount of free flash
capacity is a major factor determining write performance, in particular for small
random writes. In order to tackle this issue, the TRIM command was introduced
for SSDs that are equipped with the Serial Advanced Technology Attachment
(SATA) interface. In systems using the Serial Attached SCSI (SAS) interface a
similar functionality is offered through the commands UNMAP and WRITE SAME.

The TRIM command allows to notify an SSD about storage space whose con-
tent is obsolete. This works without stint provided that no further intermediate
software layers, like software RAID drivers or logical volume managers, are in-
terposed. To the best of our knowledge the Device Mapper RAID in Linux is
the only RAID implementation, which currently supports TRIM commands, but
only for parity-less RAID configurations (RAID 0, RAID 1 and RAID 10). The
authors of this report are not aware of any RAID implementation that sup-
ports TRIM in parity-based RAID setups. Currently available hardware RAID
controllers also do not propagate TRIM commands to the member drives. Due to
lacking support, the TRIM command provides at present no advantage in many
persistent storage systems that are in use.

This report focuses on SATA-based storage systems, where hardware or soft-
ware RAID implementations are interposed between a filesystem and the SSD
devices. The objective is to incorporate the support for TRIM commands into
such storage systems in order to improve the write throughput by facilitating
the garbage collection mechanism of the deployed SSDs. The TRIM command is
specified by the Serial ATA standard [14] since it was proposed back in 2007 [13].
Each TRIM command comprises at least one Logical Block Addressing (LBA)
range consisting of a starting sector and the number of sectors, which can be
considered as unallocated. A TRIM command issued to a RAID device must be
translated similarly to write requests to be properly processed by all affected
member drives. Additionally, the parity information has to be maintained in
RAID configurations like RAID 5 or RAID 6, which is potentially more compli-
cated than for write requests due to the implementation of the TRIM command
inside an SSD.

The remainder of this report is structured as follows. We provide the techni-
cal background on SSDs, the TRIM command and RAIDs in Sect. 2. In Sect. 3,
we explain how TRIM can be incorporated into common RAID organizations. We
consider the integration of the TRIM command into operating systems as well
as the current technical limitations of the TRIM command. Finally, we discuss
the introduced approach for TRIM support in SSD RAIDs in Sect. 4 and give an
overview of our further work.

2



2 Technical Background

This section provides the required technical foundations of Solid State Drives
(SSDs), the TRIM command as well as of the Redundant Array Of Independent
Disks (RAID) technique.

2.1 Solid State Drives

SSDs employ NAND-flash memory for persistent storage of data. NAND-flash
memory is internally organized in blocks comprising multiple pages that represent
the smallest writable data portions. The capacity of a single flash page ranges
from 512 bytes to several kilobytes and one flash block consists usually of 64
or 128 flash pages. Flash memory exposes two crucial properties: Each flash
memory cell has to be erased before programming and the number of erase cycles
is limited. The actual limit depends on the particular type of flash memory and
can range from several thousands to a million erase cycles. Due to these flash
memory characteristics, a NAND-flash page has also to be erased before data can
be written to it. Erases are performed on whole NAND-flash block erasing all its
pages in parallel. A block erasure takes significantly longer than programming
or reading of a page. For brevity, we will use the term “flash memory” instead
of “NAND-flash memory” for the remainder of this report.

The limited endurance of flash memory is addressed by wear leveling, which
ensures that erase operations are balanced over all blocks. When the content
of a single flash page would have to be changed in-place, it would be necessary
to save the data of all the other pages, erase the flash block, write the saved
data back and write the new content to the mentioned page. To avoid this
unnecessary burden, the new content of the page is written into an empty page
and the old page is marked as invalid. This requires to keep information about the
mapping between logical addresses of data and the corresponding physical flash
pages. This mapping is managed by the flash translation layer (FTL) usually
implemented in the firmware of the SSD controller. Consequently, each flash
page is always in one of these three states: empty, valid or invalid. An empty
page has been erased and is, thus, writable. A valid page contains valid data
that is passed to the host if the page is read. An invalid page contains outdated
data. To avoid exhausting all empty pages, the invalidated pages have to be
reclaimed. This is done by the garbage collection mechanism, which is usually also
implemented in the firmware of the SSD controller. It first copies the contents of
valid pages within a block to another block and subsequently erases the particular
block. For this reason, the garbage collection incurs additional page writes within
the SSD compared to the write operations issued by the host, leading to write
amplification [3]. In order to deliver a high write throughput, write amplification
must be limited. One effective approach is to guarantee a substantial amount of
free flash pages by over-provisioning. This approach increases the spare capacity
that equals to the difference between the physical capacity of the flash memory
of an SSD and the capacity advertised to the host’s operating system.

3



2.2 The TRIM Command

In contrast to SSDs, Hard Disk Drives (HDDs) can update data in place without
a significant reduction of their life time and without performing additional read
or write operations decreasing the throughput of the drive. This characteristic
of HDDs has led to the situation that filesystems usually only update their
metadata when a file is deleted leaving the content of the corresponding storage
space untouched until it is allocated to another file. While this remains without
consequences for HDDs, it prevents SSDs from considering the corresponding
flash pages as invalid (cf. Sect. 2.1) and reclaiming them to increase the amount
of empty flash pages. The SSD only becomes aware that the page’s data is
invalid, when the corresponding logical address is referenced next time by a
write request.

For SSDs using the SATA interface as interconnection to host bus adapters,
the TRIM command was proposed back in 2007 [13] in order to rectify this sit-
uation. Since then, the TRIM command is incorporated into the SATA stan-
dard [12, 14]. This command allows the filesystem to notify the SSD controller
of a logical address range whose content can be considered as obsolete. Within
the SATA standard, addresses are specified according to the Logical Block Ad-
dressing (LBA) scheme. The LBA scheme addresses the storage capacity of a
device by a linear mapping of sectors, whereby a sector represents the small-
est addressable unit. With each TRIM command, at least one LBA range has to
be provided, where each LBA range consists of a starting address (LBA sector
number) and the number of sectors that shall be trimmed beginning with the
given LBA sector number [14]. The maximum number of LBA ranges allowed
per TRIM command depends on the used SSD, while the range length is limited
to 65, 535 sectors.

The main drawback of the TRIM command is its interaction with commands
that rely on Native Command Queuing (NCQ), which is an important feature
introduced by the SATA standard in order to increase the performance of storage
devices. NCQ permits to issue up to 32 read or write commands simultaneously
to a SATA device. It was originally introduced to provide SATA HDDs with the
ability to reorder read and write requests within the command queue to mini-
mize the read/write head movement and, hence, increase the throughput. This
technique is also beneficial for SSDs because it permits to utilize more than one
flash memory chip at once by serving multiple read or write requests concur-
rently. However, the TRIM command cannot be queued using NCQ and would
cause a cancellation of queued commands when issued while NCQ-enabled com-
mands are processed [12, 14]. This introduces a performance penalty when a
series of queued reads or writes is interrupted by TRIM commands. Each TRIM

command forces the device driver to issue the TRIM solely, wait for its comple-
tion, and then continue to issue further queueable requests to the device. This
decreases the degree of parallelism in processing I/O requests.

The integration of the TRIM command into current operating systems happens
mainly through the filesystem drivers but also through the swap space drivers.
In order to benefit from the TRIM command, filesystems have to be aware of

4



the possibility to use TRIM and make use of it. Filesystems usually make use of
the TRIM command when a particular part of the storage space does no longer
contain needed data, e.g., when a file has been deleted. In this case, the set
of LBA ranges that were assigned to the deleted file is trimmed. This can be
performed immediately or postponed in order to trim a larger part of storage
space at a later time, e.g., when more changes of the filesystem content have
been accomplished.

2.3 RAID

RAIDs involve the aggregation of multiple drives in order to increase the perfor-
mance, reliability or the storage capacity of the resulting logical drive. Patterson
et al. [11] introduced RAIDs initially. Since then, further RAID organizations
and optimizations of the existing organizations have been introduced [1, 8, 10].
Performance analyzes and surveys can, for example, be found in [2, 6]. The key
concepts incorporated into RAIDs are data striping, data mirroring and the
maintenance of parity information.

Data striping aggregates the local address ranges of the member drives and
decomposes data portions to scatter them across the member drives to increase
the throughput. The data is organized in logically continuous data portions
named stripes, which comprise multiple chunks distributed over the member
drives. A disadvantage of pure striping is that it suffers more likely from a data
loss since for multiple drives, a drive failure becomes more probable. Data mir-
roring is intended to reduce the chance of a data loss due to a drive failure by
keeping multiple copies of the data. This comes with a lower throughput and
usable storage capacity. Parity information can be used to improve throughput
and reliability. This is achieved by augmenting data striping with parity infor-
mation in order to be able to recover data when drives fail or when a sector
becomes inaccessible. RAID configurations are differentiated according to their
level. Commonly used RAID levels are RAID 0 (pure data striping), RAID 1
(pure data mirroring), RAID 5 and RAID 6 (data striping with one or two par-
ities, respectively). Additionally, multiple RAID devices can be combined to a
hierarchical RAID (e.g., RAID 10, RAID 50 or RAID 60).

3 Incorporating TRIM support into RAIDs

In this section, we first describe the translation of TRIM commands and the
processing of parity updates in hardware and software RAID implementations.
Both can be necessary in order to appropriately handle TRIM commands issued
to a RAID device. In the second part of this section, we then consider the
propagation of TRIM commands in RAID organizations.

3.1 Handling the TRIM command in RAIDs

From the perspective of a RAID device (regardless of whether a hardware or
a software RAID implementation is used), a TRIM command has to be handled

5



similar to a write request because a TRIM command issued to a RAID device
has to be translated into one or more TRIM commands that must be sent to the
affected member drives. In contrast to a write request that provides a single LBA
range, a TRIM command can include multiple LBA ranges, where each of them
consists of a starting address (LBA sector number) and a number of sectors to
be trimmed beginning with the given LBA sector number. Depending on the
used RAID level, an address translation and a parity information update may
also be required in order to serve a TRIM command. In the following subsections,
we explain how TRIM commands can be handled in RAIDs considering different
RAID levels. We start with the parity-less RAID levels (RAID 0 and RAID 1),
continue with the parity-based RAID levels (RAID 5 and RAID 6) and finally
discuss hierarchical RAID levels (e.g., RAID 10).

RAID implementations will use a part of the available storage capacity for
metadata in certain RAID setups. This leads to an overall storage capacity
that is smaller than the total capacity of the underlying devices. Storing the
RAID metadata on the member drives necessitates shifting the local address
range. Furthermore, some RAID implementations permit to use partitions of
the member drives, which causes a further shift of the address range. However,
these considerations involve shifting addresses by a fixed offset only and are,
therefore, excluded in the following description of TRIM translation.

Algorithm 1 Algorithm for translation of LBA range to chunk ranges.

Input:
– LBA range r = {start , length}
– chunk size csize in sectors

Output: List Lc of chunk ranges.

Lc := {}
sectors := r .length
chunk length := csize
position := r .start
while sectors > 0 do

offset := position mod csize
if sectors ≥ (csize − offset) then

chunk length := csize − offset
else

chunk length := sectors
end if
c := (position ÷ csize : offset : chunk length)
Lc := Lc ∪ {c}
position := position + chunk length
sectors := sectors − chunk length

end while

6



Parity-Less RAID Levels. The parity-less RAID levels RAID 0 and RAID 1
pursue two different goals: while RAID 0 uses data striping and focuses on
increasing performance, RAID 1 uses data mirroring targeting mainly at a higher
reliability. In RAID 0 configurations, the (global) LBA range of the RAID device
is divided in fixed-size chunks (also called stripe units) that are distributed over
multiple drives in round-robin manner. Hence, a LBA range that is provided
with a TRIM command can span one or more chunks. In addition to this, one
or two of the spanned chunks can be covered only partially, i.e., the LBA range
provided with a TRIM command may not be aligned to the chunk boundaries. For
RAID configurations that employ data striping such as RAID 0, the translation
of a LBA range supplied with a TRIM command can be carried out in two steps.
In the first step, the affected chunks are determined by decomposing the given
LBA range. This can be performed according to the algorithm 1 that maps a
LBA range to chunk ranges. The second step is the mapping of chunk ranges
to local LBA ranges of the member drives. A chunk range (num : start : len)
comprises the chunk number given by num, a starting sector start and the range
length len in sectors.

After the identification of the affected chunks, the calculated chunk ranges
are mapped to the underlying drives in order to accomplish the TRIM command
on the RAID device. RAID 0 configurations maintain no parity information. For
this reason, all chunks contain data. This permits a straight-forward mapping of
chunk ranges to LBA ranges on underlying devices: For a RAID 0 configuration
with n drives and a chunk range (num : start : len), the corresponding drive
number equates to num mod n. The starting sector is computed as [(num ÷
n) · csize] + start , where csize corresponds to the number of sectors per chunk and
num ÷ n to the stripe number. Please note that ÷ denotes an integer division.
An example of TRIM translation is shown in Fig. 1.

To support TRIM in RAID 1 configurations, a single TRIM command issued to
a RAID device has to be duplicated and sent to each member drive. An address
translation like for RAID 0 configuration is not necessary as the address ranges
of the mirrors are not aggregated. However, as already mentioned, it can be
necessary to shift the addresses in real RAID systems, which is neglected in the
following example. The example shown in Fig. 2 illustrates the duplication of a
TRIM command in a RAID 1 organization with 4 drives used for quadruple data
mirroring.

Parity-Based RAID Levels. The parity-based RAID levels RAID 5 and
RAID 6 protect data with one or two parities, respectively. Parity-based RAID
levels with more than two parities are possibly needed in the future for data
reliability reasons [8]. For these levels, a similar approach as depicted in the
following can be used.

Similar to RAID 0, parity-based RAID configurations rely on data striping
and, thus, necessitate an address translation to support TRIM commands issued
to the RAID device. Furthermore, the parity information has also to be updated
after issuing TRIM commands to the underlying drives to keep the parity infor-

7



TRIM(408,128)

(12:24:8) (13:0:32) (14:0:32)

(15:0:32) (16:0:24)

Translation to chunk
ranges

Mapping to TRIM commands
for member drives

drive 0 drive 1 drive 2 drive 3

TRIM(120,8)

TRIM(128,24)

TRIM(96,32) TRIM(96,32) TRIM(96,32)

RAID0, 4x 80 GB drives, 32 sectors per chunk

TRIM(<first LBA>,<#sectors>)

(<no.>:<offset>:<#sectors>)

Fig. 1. Exemplary TRIM translation in a RAID 0 configuration with 4 drives.

8



TRIM(408,128)

Duplication of TRIM command
for member drives

drive 0 drive 1 drive 2 drive 3

TRIM(408,128) TRIM(408,128) TRIM(408,128) TRIM(408,128)

RAID1, 4x 80 GB drives, quadruple mirroring

TRIM(<first LBA>,<#sectors>)

Fig. 2. Exemplary TRIM translation in a RAID 1 configuration with quadruple data
mirroring.

mation consistent with the data. In the following, we first describe the address
translation and deal then with the required updates of the parity information.

The first step of the address translation is identical to RAID 0 configurations
explained in the previous paragraph, i.e., for each TRIM command all affected
chunks can be determined using algorithm 1. For the second step, the parity
information has also to be considered. For example, in a RAID 5 setup only one
chunk per stripe carries parity information, while RAID 6 configurations possess
two parity chunks per stripe. Besides the different number of parity chunks per
stripe, several parity placement layouts have been proposed. Each parity place-
ment layout can be characterized by a parity-placement-function. The location
of the data chunks is then described by an appropriate data-mapping-function.
Widely used parity-placement-functions in conjunction with the corresponding
data-mapping-functions can be found in [7]. According to the authors of [5]
and [7], the left-symmetric parity placement and its variants offer the best per-
formance for RAID 5 configurations employing HDDs. As a consequence, this
scheme (Fig. 3) is used by default in current RAID implementations, e.g., in
Linux Software RAID.

In this report, we examine the translation of a TRIM command in parity-based
RAID configurations using the left-symmetric parity placement as an example.
The following description of mapping the chunk ranges to LBA ranges on un-

9



derlying drives can be easily transferred to other parity placement algorithms
by using the appropriate data-mapping-function and parity-placement-function.

i=0

i=1

i=2

i=3

i=4

D
0
D
1
D
2
D
3
P
0

D
5
D
6
D
7
P
1
D
4

D
10
D
11
P
2
D
8
D
9

D
15
P
3
D
12
D
13
D
14

P
4
D
16
D
17
D
18
D
19

(a) RAID 5

i=0

i=1

i=2

i=3

i=4

Q
0
D
0
D
1
D
2
P
0

D
3
D
4
D
5
P
1
Q
1

D
7
D
8
P
2
Q
2
D
6

D
11
P
3
Q
3
D
9
D
10

P
4
Q
4
D
12
D
13
D
14

(b) RAID 6

Fig. 3. Left-symmetric parity layout in a RAID 5 (a) and in a RAID 6 (b), both
comprising 5 drives. Each column corresponds to a drive, while data chunks are denoted
by Dk. Parity chunks for the stripe i (row) are denoted by Pi in a RAID 5 (a) as well
as by Pi and Qi in a RAID 6 (b).

Consider a RAID 5 configuration with n drives and p = 1 parity chunks per
stripe that uses left-symmetric parity placement. To determine the corresponding
drive for a chunk range (num : start : len), we first compute the stripe number
m = num ÷ (n − p). The next step is to calculate the index p drive of the
drive that holds the parity chunk for stripe m. This is equal to p drive = (n −
p) − (m mod n). Then, the index of the drive containing the particular data
chunk corresponds to d drive = (p drive + (num mod (n − p)) + 1) mod n.
The number of the starting sector equals to (m · csize) + start like for RAID 0
configurations. The translation of a TRIM command in a RAID 5 is illustrated
by an example shown in Fig. 4.

The main difference between RAID 5 and RAID 6 configurations is that the
latter impose two parity chunks per stripe. The parity placement algorithms for
RAID 5 configurations can also be applied to RAID 6 configurations. There-
fore, we also use the left-symmetric parity placement for RAID 6 configurations
in the following. For a RAID 6 configuration with n drives and p = 2 parity
chunks per stripe, the stripe number m for a chunk range (num : start : len)
is given by m = num ÷ (n − p). The index p drive of the drive that holds
the first parity chunk equates to p drive = (n − 1) − (m mod n), while the
index q drive of the drive comprising the second parity chunk is computed as
q drive = (p drive + 1) mod n. The particular data chunk is located on the
drive with the index d drive = (p drive + (num mod (n− p)) + 2) mod n. The
number of the starting sector can be computed in the same way as for RAID 0

10



TRIM(408,128)

(12:24:8) (13:0:32) (14:0:32)

(15:0:32) (16:0:24)

Translation to chunk
ranges

Mapping to TRIM commands
for member drives

drive 0 drive 1 drive 2 drive 3

TRIM(152,8)

TRIM(160,24)

TRIM(128,32) TRIM(128,32) TRIM(160,32)

RAID5, 4x 80 GB drives, 32 sectors per chunk,
left-symmetric parity placement

TRIM(<first LBA>,<#sectors>)

(<no.>:<offset>:<#sectors>)

Fig. 4. Exemplary TRIM translation in a RAID 5 configuration with 4 drives.

11



TRIM(408,128)

(12:24:8) (13:0:32) (14:0:32)

(15:0:32) (16:0:24)

Translation to chunk
ranges

Mapping to TRIM commands
for member drives

drive 0 drive 1 drive 2 drive 3

TRIM(192,32)

TRIM(224,32)

TRIM(256,24) TRIM(224,32) TRIM(216,8)

RAID6, 4x 80 GB drives, 32 sectors per chunk,
left-symmetric parity placement

TRIM(<first LBA>,<#sectors>)

(<no.>:<offset>:<#sectors>)

Fig. 5. Exemplary TRIM translation in a RAID 6 configuration with 4 drives.

12



and RAID 5 configurations. An exemplary translation process of a TRIM com-
mand in a RAID 6 organization is depicted in Fig. 5.

Since the parity information must always be consistent with the data, it has
to be updated after a TRIM command was processed. A useful drive characteris-
tic that would ease the maintenance of a consistent state in parity-based RAIDs
would be that subsequent read requests to a trimmed LBA range always return
the same data. However, the SATA standard [14] tolerates that subsequent reads
of trimmed logical blocks may return different data. The exact behavior of a sub-
sequent read request to a trimmed sector is reported by a particular SATA device
when the IDENTIFY DEVICE command [14] is issued to it. There are three
possibilities: The first is that each read of a trimmed sector may return different
data, i.e., an SSD shows non-deterministic trim behavior. We denote this variant
of trim behavior as “ND TRIM” for the rest of this report. The remaining two pos-
sibilities represent a deterministic trim behavior, where all subsequent reads of a
trimmed logical block return the same data, which can be either arbitrary (de-
noted as “DX TRIM”) or contain only zero-valued bytes (denoted as “DZ TRIM”).
The SATA standard [14] leaves for the variant DX TRIM open whether the re-
turned data will be the same for different sectors or not.

The variant DZ TRIM permits the most comfortable handling of parity infor-
mation updates. In this case, parity updates can be performed like for requests
to write only zero-valued bytes into a particular logical block and without the
necessity to read the trimmed logical block subsequently. A description of the
parity update process for write requests in parity-based RAIDs can, e.g., be
found in [4, section 24.3]. The reconstruction of data (e.g., in case of a drive fail-
ure or a erroneous sector) and the verification of data does not require particular
attention if DZ TRIM is used because all trimmed logical blocks will return only
zero-valued bytes.

However, the situation is different for the remaining two cases: DX TRIM and
ND TRIM. The variant DX TRIM may require to read each of the trimmed sectors
in order to recalculate the parity properly. This will entail additional read oper-
ations and further lower the throughput of the RAID device or at least extend
the completion time of a TRIM command. The situation becomes even more com-
plicated for ND TRIM. The reason is that the stored parity information might be
considered invalid during the reconstruction or verification of stored data be-
cause a read of trimmed sectors may deliver different values compared to the
time of parity calculation. Both cases, DX TRIM and ND TRIM, can be handled by
maintaining a permanently stored bitmap for all sectors in that the correspond-
ing sectors are marked as either valid or trimmed. Then, the parity calculations
are performed for a marked sector like for sectors that comprise only zero-valued
bytes. Correspondingly, write requests with data solely composed of zero-valued
bytes can also be superseded by a TRIM command instead of a writing oper-
ation. For the reconstruction or verification of data, the current values of the
marked sectors are simply not considered. The described approach can also make
reading trimmed sectors obsolete for DX TRIM. Considering the impact of TRIM

commands on the reliability of a RAID device, the situation is the same as for

13



regular write requests. If a failure (e.g., power loss, system crash) occurs during
the writing of data, the parity information can become inconsistent with the
data. However, for RAID setups maintaining a bitmap with the trimming state
of each sector, this information may additionally become inconsistent in case of
a failure.

In addition to trimming the LBA ranges covered by data chunks whose con-
tent is considered as no longer needed by a overlying filesystem, the storage
space used by parity chunks can be trimmed as well in certain situations. This
occurs when the resulting parity chunk would comprise only zero-valued bytes.
Parity calculations are performed sector-wise, meaning that the first sector of a
parity chunk contains the parity information generated by the first sector within
each data chunk in a stripe. Due to this, it is possible that only a part of sectors
within a parity chunk can be trimmed because they will contain solely zero-
valued bytes. This method of trimming parity chunks in whole or in part can
be applied to all three variants of trim behavior. However, the cases DX TRIM

and ND TRIM require that trimmed sectors located within parity chunks are also
marked within the bitmap used to maintain the trim status of each sector.

Hierarchical RAID Levels. Hierarchical RAID levels (e.g., RAID 10, RAID 55
and RAID 60) combine two RAID levels hierarchically by using a set of RAID de-
vices as “member drives” for creating a new RAID device. For example, RAID 10
realizes a stripe set of mirrors, while RAID 60 comprises a stripe set of distributed
double parity sets.

To support TRIM in a hierarchical RAID configuration, the translation of TRIM
commands has to take place several times. Considering a RAID 60 organization,
an address translation is first performed on the top-level RAID 0 and then
for each of the underlying RAID 6 devices. In contrast to this, in a RAID 10
configuration, an address translation has to be performed only on the top-level
RAID 0, while the resulting TRIM commands are simply duplicated and sent to
each member drive of the bottom-level RAID 1 devices. An example of TRIM

translation in a RAID 10 is depicted in Fig. 6.
Besides direct attached RAID devices, hierarchical RAID configurations can

be found in storage networks, where a bunch of remote RAID devices is com-
bined to a logical RAID device. For example, multiple RAID 6 devices deployed
in different hosts can be connected through Internet Small Computer System
Interface (iSCSI) and combined to one logical RAID 6 device.

3.2 Propagation of the TRIM command in RAIDs

Filesystems generate TRIM commands in order to notify SSDs of storage space
parts with no longer needed content. These parts of storage capacity can be
reclaimed by the garbage collection mechanism in order to gain more free flash
capacity (cf. Sect. 2.2). Contemporary storage system architectures can include
multiple intermediate layers between a filesystem and the physical block devices
(e.g., SSDs). To ensure that the generated TRIM commands go down to the SSDs,

14



TRIM(408,128)

(12:24:8) (13:0:32) (14:0:32)

(15:0:32) (16:0:24)

Translation to chunk
ranges

Mapping to TRIM commands
for member drives

drive 0 drive 1

TRIM(224,32)

TRIM(256,24)

TRIM(224,32)

TRIM(192,32)TRIM(216,8)

RAID0, 2x 80 GB drives,
32 sectors per chunk

TRIM(<first LBA>,<#sectors>)

(<no.>:<offset>:<#sectors>)

RAID1, 2x 160 GB RAID0 devices, mirroring

(12:24:8) (13:0:32) (14:0:32)

(15:0:32) (16:0:24)

Translation to chunk
ranges

Mapping to TRIM commands
for member drives

drive 0 drive 1

TRIM(224,32)

TRIM(256,24)

TRIM(224,32)

TRIM(192,32)TRIM(216,8)

RAID0, 2x 80 GB drives,
32 sectors per chunk

Duplication of TRIM command
for bottom-level RAIDs

Fig. 6. Example of TRIM translation in a hierarchical RAID 10 configuration comprising
4 drives.

15



each intermediate layer must be able to propagate TRIM requests to the underly-
ing layer. Our focus lies on configurations that employ RAID implementations as
intermediate layers. Sect. 3.1 explains the steps required to appropriately handle
TRIM commands at a RAID layer in order to propagate them to the to underly-
ing layer. However, the performance penalty introduced by TRIM commands in
combination with NCQ (Sect. 2.2) has to be taken into account.

It can be beneficial to delay the sending of TRIM commands to the physical
block devices, e.g., when read and write requests using NCQ are processed or
the utilization of a physical block device is high, in general. A further appli-
cation case for delaying TRIM commands are situations, where it can be more
advantageous to merge multiple TRIM requests in order to reduce their number
and trim a larger part of storage capacity, for example, in workloads with many
TRIM requests comprising only few sectors. The merging of TRIM requests is al-
ready implemented in some filesystems, e.g., ext4fs [9]. However, the problem
is that intermediate layers often do not possess enough information about the
current state of the physical block devices. Therefore, delaying TRIM commands
should be performed at the layer that directly controls the physical block de-
vices. Then, it would be sufficient when the intermediate layers would only pass
the translated TRIM commands to the subjacent layer.

An unfavorable side effect of delaying TRIM commands that has to be consid-
ered is a possible inconsistency in parity-based RAIDs when TRIM requests are
delayed too long. The reason is that a device failure can prevent the processing
of the delayed TRIM requests although the parity information was already up-
dated considering the trimmed sectors. Furthermore, a race condition between
TRIM commands and subsequent read requests can occur. Both problems can be
avoided by overwriting the sectors addressed by the present TRIM requests for
example with zero-valued bytes, if the physical block device exhibits the vari-
ant DZ TRIM of trim behavior. In the cases DX TRIM and ND TRIM, overwriting
sectors referred to by outstanding TRIM commands is unnecessary due to the
fact that they are marked as trimmed and, hence, treated like containing solely
zero-valued bytes. Another option for avoiding inconsistencies due to delayed
TRIM is keeping track of outstanding TRIM requests using a bitmap, which is
stored permanently and can survive a failure like a power loss. Further issues
can occur when TRIM requests are delayed for varying lengths of time on the
different physical block devices. For such cases, there should be a possibility
of forcing immediate processing of outstanding TRIM commands on all physical
block devices.

4 Conclusions and Future Work

Incorporating the TRIM command into SSD-based RAID architectures is an im-
portant step to maintain high transfer and I/O rates for write requests in such
architectures. This task can be more conveniently achieved for parity-less RAID
configurations. However, incorporating TRIM into a parity-based RAID setup
results in new challenges mainly resulting from the read behavior of trimmed

16



sectors. Furthermore, it can result in overhead caused by additional parity calcu-
lations and drive accesses. Nevertheless, the incorporation of the TRIM command
into RAID configurations promises an increased RAID write performance when
the interaction between TRIM commands and NCQ was appropriately taken into
account.

Our next step will be the development of a prototype implementation of
a TRIM-aware parity-based RAID. Based on this prototype, we will be able to
study the behavior of a TRIM-aware parity-based RAID configurations. We will
focus on the quantification of the additional overhead introduced by the required
parity update operations. By this, we expect to get insights into how to build
efficient high-performance SSD RAID systems.

A further direction would be to develop an architecture supporting the prop-
agation of TRIM not only in RAID implementations but also in all intermediate
indirection layers between the filesystem and the SSDs. In such architectures
each indirection layer has to translate TRIM commands and pass them directly
to the underlying layer, except for the lowest layer that owns the exclusive con-
trol over the physical block devices and, hence, will have an reliable utilization
information. This will allow to realize an efficient delaying and merging of TRIM
requests intended for a particular physical block device.

References

1. Burkhard, W., Menon, J.: Disk array storage system reliability. In: Fault-Tolerant
Computing, 1993. FTCS-23. Digest of Papers., The Twenty-Third International
Symposium on. pp. 432 –441 (jun 1993)

2. Chen, P.M., Lee, E.K., Gibson, G.A., Katz, R.H., Patterson, D.A.: Raid: high-
performance, reliable secondary storage. ACM Comput. Surv. 26(2), 145–185
(1994)

3. Hu, X.Y., Eleftheriou, E., Haas, R., Iliadis, I., Pletka, R.: Write amplification
analysis in flash-based solid state drives. In: SYSTOR ’09: Proceedings of SYSTOR
2009: The Israeli Experimental Systems Conference. pp. 1–9. ACM, New York, NY,
USA (2009)

4. Jacob, B.L., Ng, S.W., Wang, D.T.: Memory Systems: Cache, DRAM, Disk. Mor-
gan Kaufmann (2008)

5. Lee, E.K., Katz, R.H.: Performance consequences of parity placement in disk ar-
rays. In: Proceedings of the fourth international conference on Architectural sup-
port for programming languages and operating systems. pp. 190–199. ASPLOS-IV,
ACM, New York, NY, USA (1991), http://doi.acm.org/10.1145/106972.106992

6. Lee, E.K., Katz, R.H.: An analytic performance model of disk arrays. In: Proceed-
ings of the 1993 ACM SIGMETRICS conference on Measurement and modeling
of computer systems. pp. 98–109. SIGMETRICS ’93, ACM, New York, NY, USA
(1993), http://doi.acm.org/10.1145/166955.166994

7. Lee, E.K., Katz, R.H.: The performance of parity placements in disk arrays. IEEE
Transactions on Computers 42, 651–664 (1993)

8. Leventhal, A.: Triple-parity raid and beyond. Commun. ACM 53(1), 58–63 (2010)
9. Mathur, A., Cao, M., Bhattacharya, S., Dilger, A., Tomas, A., Vivier, L.: The

new ext4 filesystem: current status and future plans. Linux Symposium (2007),
http://ols.108.redhat.com/2007/Reprints/mathur-Reprint.pdf

17



10. Menon, J., Riegel, J., Wyllie, J.: Algorithms for software and low-cost hardware
raids. In: Proceedings of the 40th IEEE Computer Society International Confer-
ence. pp. 411–. COMPCON ’95, IEEE Computer Society, Washington, DC, USA
(1995), http://dl.acm.org/citation.cfm?id=527213.793536

11. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inexpensive
disks (raid). SIGMOD Rec. 17, 109–116 (June 1988)

12. Serial ATA International Organization: Serial ATA Revision 2.6. Tech. Rep. Revi-
sion 2.6, Serial ATA International Organization (February 2007)

13. Shu, F., Obr, N.: Data Set Management Commands Proposal for ATA8-ACS2.
Microsoft Corporation, One Microsoft Way, Redmond, WA. 98052-6399, USA, re-
vision 1 edn. (Jul 2007)

14. Technical Committee T13: Information technology – ATA/ATAPI Command Set
- 2 (ACS-2). Tech. Rep. T13/2015-D, revision 7, Technical Committee T13 (June
2011)

18


