
Autonomy Features and Feature Composition in REBECA

Helge Parzyjegla1, Arnd Schröter2, Daniel Graff2, Anselm Busse2,
Alexej Schepeljanski3, Jan Richling2, Matthias Werner3, and Gero Mühl1

1 Architecture of Application Systems, University of Rostock, Germany
2 Communication and Operating Systems Group, Berlin Institute of Technology, Germany

3 Operating Systems Group, Chemnitz University of Technology, Germany

ABSTRACT
This paper explains how autonomy features targeting self-
healing and self-optimization can be implemented and com-
posed into Rebeca, a publish/subscribe middleware which
has been designed for distributed event-driven applications.

1. INTRODUCTION
Publish/subscribe is a flexible communication style well

suited for event-driven applications. Application compo-
nents interact by publishing notifications about occurred
events and by subscribing to notifications of those events
they are interested in. As publishers do not necessarily need
to know their subscribers and vice versa, components are
only loosely coupled and enable applications to be easily
adaptable, flexibly extendable, and to run efficiently even in
highly dynamic environments. The latter, however, requires
that the underlying publish/subscribe infrastructure respon-
sible to deliver a published notification to all its subscribers
is also able to cope with frequently changing network condi-
tions and application behavior. Since in these environments
a manual administration is expensive at best, if not infeasi-
ble, modern publish/subscribe middleware implementations
need to be context- as well as self-aware to autonomously
organize and adapt themselves.

Therefore, our publish/subscribe middleware Rebeca
(http://rebeca-middleware.org) has been equipped with
autonomy features. Rebeca brokers exhibit strategies to
self-organize their overlay network, to adapt and optimize
the employed publish/subscribe routing algorithm used to
exchange subscriptions and notifications, and to recover from
failing nodes without loss of messages. Thereby, each fea-
ture is implemented by a dedicated algorithm encapsulated
in a pluggable module. Considered in isolation, each algo-
rithm works perfectly, but when running in parallel, auton-
omy features usually interfere and raise severe difficulties.
Thus, composing single autonomy features to comprehen-
sive solutions is challenging. It often leads to unexpected
side-effects, unanticipated behavior and, for all non-trivial
cases, it rarely succeeds on the first attempt.

Following, in Sect. 2, we introduce Rebeca’s flexible ar-
chitecture, which is the foundation for Sect. 3, where we
present challenges and approaches for the composition of
autonomy features. We conclude with an outlook in Sect. 4.

Copyright is held by the author/owner(s).
ICAC’11, June 14–18, 2011, Karlsruhe, Germany.
ACM 978-1-4503-0607-2/11/06.

Broker

input process output

Figure 1: Pipeline architecture of a broker

2. REBECA ARCHITECTURE
Rebeca’s architecture [2] is centered around functional

modularity. Therefore, all functional aspects of a Rebeca
broker and even those that are usually considered manda-
tory are seen as subject to feature composition to provide a
maximum degree of configuration freedom. Thus, a broker is
basically just a container for a selected set of pluggable com-
ponents which, in turn, implement the broker’s functionality
provided to clients and applications. Following this idea, a
broker only supports the concept of processing stages and
message channels into which actual feature components are
plugged as determined by the broker’s configuration.

As shown in Fig. 1, a broker has only three processing
stages that every message has to pass: the input stage after
receiving, the main processing stage, and the output stage
before sending. Additionally, the stages have different con-
texts and scopes. In the input and output stage, there is a
dedicated message channel for each incoming and outgoing
connection to a neighboring broker that can be used, for ex-
ample, for message serialization and encryption. The main
processing stage, however, has only one global channel for all
messages that is suited, for example, to make routing deci-
sions and determine to which neighbor brokers the message
needs to be forwarded. Plugged feature components may
interfere and manipulate messages in all stages to realize
a certain functional aspect. For this, plugins may modify,
transform, delete messages or even insert new ones.

In Rebeca, even mandatory publish/subscribe function-
ality is implemented in terms of plugins. Thereby, a broker’s
functional core becomes easily exchangeable and replaceable
with custom implementations that may better suit one’s
needs. Plugins are available for different publish/subscribe
routing algorithms, for serialization and encryption, for dif-
ferent transport protocols and network simulator bindings
as well as for autonomy maintenance and optimization of
the broker’s overlay network and routing algorithm.



3. AUTONOMY FEATURES
Quality of Service (QoS) and fault tolerance are impor-

tant aspects of publish/subscribe systems. To avoid ineffi-
cient and invalid configurations in dynamic environments,
the system must provide means to autonomously organize,
optimize, and heal itself.

Self-organizing Topologies (SOT). Although target-
ing dynamic environments, publish/subscribe overlay topolo-
gies have often been assumed to be static. However, in set-
tings where message patterns and network conditions are
subject to frequent changes, static topologies inevitably lead
to suboptimal system performance. Therefore, Rebeca em-
ploys a self-organizing algorithm that autonomously adapts
the structure of the overlay network [1]. The algorithm is
based on an on-line heuristic which considers the character-
istics of links, the performance of brokers as well as patterns
occurred in the network’s message flows. The algorithm first
identifies inefficient links and potential replacement candi-
dates. Thereafter, the impact of a possible reconfiguration
is estimated and, if beneficial for all participating nodes, the
topology gets reconfigured while ensuring message ordering
and avoiding message losses.

Self-optimizing Routing (SOR). Traditionally, all bro-
kers of a publish/subscribe network use the same routing
strategy for exchanging messages which is usually deter-
mined at design time or set at system start-up. To better
adapt the network to varying message flows, we introduced
a self-optimizing publish/subscribe routing scheme that is
based on hybrid routing algorithms. Hybrid algorithms en-
able a fine-grained, edge-wise routing configuration. There-
fore, for each link, always the most beneficial routing strat-
egy can be used depending on the relation of published no-
tifications and forwarded subscriptions which may dynami-
cally change over time. Based on a local decision criterion,
neighboring brokers can, thus, renegotiate the applied strat-
egy on their shared link using a simple coordination proto-
col [4].

Fault-tolerant Topologies (FTT). Starting from a cer-
tain size, scalable networks must consider faulty nodes and
links. Within an acyclic publish/subscribe overlay network,
such a fault almost always separates the network and dis-
rupts the message flow from publishers to subscribers. To
countervail message loss, the following steps are taken. First,
the topology is repaired by substituting all links to a failed
broker by new connections to an appropriate replacement
broker. Thereafter, all affected neighboring brokers synchro-
nize their filter tables to reestablish a valid routing configu-
ration. Finally, messages lost in transit on the failed link or
node are replayed from local caches of neighboring brokers.

Feature Composition. So far, we considered each au-
tonomy algorithm in isolation. Hence, the challenge is to
compose these in a way that preserves their individual prop-
erties. More precisely, the composition of the optimizing
algorithms SOT and SOR should result in a better system
performance than any of the two can achieve alone while
both should not be disturbed by the fault-tolerance algo-
rithm FTT. Beneficially, each algorithm was encapsulated
as plugin and integrated into Rebeca’s pipeline architec-
ture. As pipeline plugins just process or manipulate mes-
sages, they are not directly coupled by any other interface.
Nevertheless, indirect dependencies may exist that need to
be identified and considered before composition.

F T T client behaviorbroker faults

REBECA middleware QoS

S O Rrouting algorithm

S O Toverlay network

Figure 2: Dependencies

We systematically analyzed the plugins, the encapsulated
algorithms, and their dependencies from and impact on sys-
tem components on different system layers. The resulting
dependency graph is shown in Fig. 2 highlighting critical
points of the composition. FTT and SOT, for example, re-
configure or adapt the overlay network which, if not synchro-
nized, may lead to inconsistent topologies. Furthermore,
SOT and SOR are part of a control loop both affecting
the same QoS measure which may lead to unintended os-
cillations. Identifying problematic interactions, their root
causes, and involved components alleviates the design of ef-
fective counter measures significantly. In fact, based on this
analysis, we derived a transaction scheme for SOT which
makes the algorithm resistant to faults that occur during re-
configuration process while enabling the FTT algorithm to
repair arbitrary topologies. Furthermore, we introduced de-
layed unsubscriptions for SOR that reduce the algorithm’s
reactivity and, thus, efficiently damp oscillations. In this
context, Rebeca’s pipeline architecture primarily helped us
to minimize the direct inter-feature communication via ad-
ditional interfaces that became necessary.

4. CONCLUSION
As shown in this paper, we were able to compose differ-

ent autonomy algorithms within our middleware. This was
possible due to the fact that the middleware itself was devel-
oped with extensibility in mind. However, doing so required
adaptation of the individual algorithms. Therefore, our fu-
ture research targets towards true composability in the sense
of [3]. This requires the development of an architectural
framework together with design rules for such algorithms.
This way, each algorithm obeying these rules can simply be
integrated while composability is given by construction.

5. REFERENCES
[1] M. A. Jaeger, H. Parzyjegla, G. Mühl, and

K. Herrmann. Self-organizing broker topologies for
publish/subscribe systems. In L. M. Liebrock, editor,
The 22nd Annual ACM Symposium on Applied
Computing (SAC’07), pages 543–550, Seoul, Korea,
Mar. 2007. ACM.

[2] H. Parzyjegla, D. Graff, A. Schröter, J. Richling, and
G. Mühl. Design and Implementation of the Rebeca
Publish/Subscribe Middleware, pages 124–140. Springer
Verlag, Sept. 2010.

[3] J. Richling. Komponierbarkeit eingebetteter
Echtzeitsysteme. PhD thesis, Feb. 2006.

[4] A. Schröter, D. Graff, G. Mühl, J. Richling, and
H. Parzyjegla. Self-optimizing hybrid routing in
publish/subscribe systems. In Proceedings of the 20th
International Workshop on Distributed Systems:
Operations and Management, DSOM 2009, volume
5841 of Lecture Notes in Computer Science, pages
111–122. Springer, 2009.


