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Abstract. In the RoboCup small-size league, it is common to calculate the 
robot’s position calculated via a camera over the field as well as different kinds 
of artificial intelligence that’s run on a PC outside the field. In this case, the 
robot’s position must be predicted because of the various delays until the 
position data arrived at the robot. This paper focuses on the use of local sensors 
on the robot and a neural network to estimate the robot’s actual position. This 
paper shows how local sensors can compensate for the effect of latency times 
and how robot’s actual position can ascertained. Slip and friction effects that 
cannot be measured with local sensors are adjusted by a neutral network. 

1 Introduction 

RoboCup [1] small-size league is of particular interest, because it combines 
engineering tasks, such as building robot hardware and designing electronic 
components, with computer science applications, such as localization of objects, 
finding the robots’ positions, and calculating the best path through obstacles. Another 
interesting challenge emerges from the requirement that all team members have to 
communicate with each other in order to develop a cooperative behavior. Research on 
artificial intelligence may help find the optimal solution in all of these areas.  
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Fig. 1. The physical setup in RoboCup’s small-size league. 
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Fig. 1 show two cameras mounted approximately four meters above the floor and 
observe the field of four by five meters in size on which two teams consisting of five 
robots play. The processing sequence starting at the camera image and ending at the 
robots executing their received (action) commands suffers from significant time 
delays, as Fig. 2 illustrates.  
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Fig. 2. The image processing system consists of five stages which all contribute to processing 

delays also known as latency time. 

These time delays have the consequence that when receiving a command, the robot’s 
current position does not correspond to its position in the camera image. 
Consequently, the actions are either inaccurate or may even lead to improper behavior 
in the extreme case. For example, the robot may try to kick the ball even though it is 
not in reach anymore. 
Section 2 discusses how the position correction can be further improved on the robot 
itself and how local sensors can alleviate this problem to a large extent.  
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Fig. 3. An omnidirectional drive with its calculation model. 

Fig. 3 shows the omnidirectional drive commonly used by most robots of the small-
size league. As can be seen, an omnidirectional drive consists of three wheels, which 
are twisted to each other by 120 degrees. This drive has the advantage that a robot can 
be simultaneously doing both moving forward and spinning around its own central 
axis. Furthermore, the particular wheels, as shown on the left-hand-side of Fig. 3, 
yield high grip in the rotation direction, but almost-vanishing friction perpendicular to 
it. The specific orientation of all three wheels, as illustrated on the right-hand-side of 
Fig. 3, requires advanced controllers and exhibit higher friction than standard two-
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wheel drives. The later requires sophisticated servo loops and (PID1 ) controllers [9]. 
Depending on the carpet and the resulting wheel-to-carpet friction, one or more 
wheels may slip. As a consequence, the robot leaves its recalculated moving path. To 
this end, a robot employs its own back-propagation network to learn its own specific 
slip and friction effects. Section 0 concludes this paper with a brief discussion 
including possible future research. 

2 Local Sensors 

As has been outlined in the introduction, the latency caused by the imaging-
processing-and-action-generation loop leads to non-matching robot positions. As a 
measurable effect, the robot starts oscillating, turning around the target position, 
missing the ball, etc. An approach to solve the latency problem is to do the 
compensation calculation on the robot itself. The main advantage of this approach is 
that the robot's wheel encoders can be used to obtain additional information about the 
robot’s actual behavior. However, since the wheel encoders measure only the wheel 
rotations, they cannot sense any slip or friction effects directly. 

2.1 Latency time 

RoboCup robots are real-world vehicles rather than simulated objects. Therefore, all 
algorithms have to account for physical effects, such as inertia and delays, and have to 
meet real-time constraints. Because of the real-time constraints, perfectly exact 
algorithms would usually require too much calculation time. Therefore, the designer 
has to find a good compromise between computational demands and the precision of 
the results. In other words, fast algorithms with a just decent precision are the method 
of choice here [2], [3]. 
As has already been mentioned in the Introduction, the latency is caused by various 
components including the camera’s image grabber, the image compression algorithm, 
the serial transmission over the wire, the image processing software, and the final 
transmission of the commands to the robots by means of the DECT modules. Even 
though the system already uses the compressed YUV411 image format [5], the image 
processing software as well as the DECT modules are the most significant parts with 
a total time delay of about 200ms. For the top-level control software, which is 
responsible for the coordination of all team members, all time delays appear as a 
constant-time lag element. The consequences of the latency problem are further 
illustrated in Fig. 4 and Fig. 5. 

                                                           
1 PID is the abbreviation of proportional-integrate-differential. For further detail, the interested 

reader is referred to [9] 
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Fig. 4. Due to the latency problem, the robot receives its commands at time t2 , which actually 

correspond to the image at time t0. 

Fig. 4 illustrates the various process stages and corresponding robot positions. At time 
t0, the camera takes an image with the robot being on the left-hand-side. At the end of 
the image analysis (with the robot being at the old position), the robot has already 
advanced to the middle position. At time t2, the derived action commands arrive at the 
robot, which has further advanced to the position 2t to the right-hand-side. In this 
example, when being in front of the ball, the robots receive commands which actually 
belong to a point in time in which the robot was four times its body length away from 
the ball. Fig. 5 illustrates how the time delay between image grabbing and receiving 
commands leads to an oscillating behavior at dedicated target positions (marked by a 
cross in the figure) [6], [7], [8], [10]. 
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Fig. 5. Problem of stopping the robot at a desired point. 

2.2 Experimental Analysis 

In order to compensate for the effects discussed above, the knowledge of the exact 
latency time is very important. The overall latency time was determined by the 
following experiment: 
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The test software was continuously sending a sinusoidal drive signal to the robot. 
With this approach, the robot drives 40cm forward and than 40cm backwards. Then, 
the actual robot position as was seen in the image data was correlated with the control 
commands. As Fig. 6 shows, the duration of the latency time is seven time slots in 
length, which totals up to 234ms with 30 frames send by the camera. 
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Fig. 6. Detection of the Latency time in the control loop 

It might be worthwhile to mention here that for technical reasons, the time delay of 
the DECT modules is not constant; the jitter is in the order of up to 8ms. The values 
given above are averages over 100 measurements. 

2.3 Increased Position Accuracy by Local Sensors  

In the ideal case of slip-free motion, the robot can extrapolate its current position by 
combining the position delivered by the image processing system, the duration of the 
entire time delay, and the traveled distance as reported by the wheel encoders. In 
other words: in case slip does not occur, the robot can compensate for all the delays 
by storing previous and current wheel tick counts. This calculation is illustrated in 
Fig. 7. 
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Fig. 7. Extrapolation of the robot’s position using the image processing system and the robot’s 

previous tick count. 

Since the soccer robots are real-world entities, they also have to account for slip and 
friction, which are among other things, nonlinear and stochastic by nature. The 
following section employs back-propagation networks to account for those effects. 

3 Embedded Back-Propagation Network 

Due to the resource limitations of the robot hardware, the number of nodes and 
connections that the robot can store on its hardware is quite limited. From a hardware 
point of view, the memory available on the robot itself is the major constraint. In 
addition to the actual learning problem, this section is also addresses the challenge of 
finding a good compromise between the network’s complexity and its processing 
accuracy. 
A second constraint to be taken into account concerns the update mechanism of the 
back-propagation learning algorithm. As is well known, back-propagation temporarily 
stores the calculated error sums as well as all the weight changes ijwΔ  [4]. This leads 
to a doubling of the memory requirements, which would exhaust the robot’s onboard 
memory size even for moderately sized networks. As a workaround, this section 
stores those values on the central control PC and communicates the weight changes 
by means of the wireless communication facility. This separation is illustrated in Fig. 
8. 

 

Input

FFN Output

set weights

microcontroller on the robot

Error Backpropagation

FFN Copyweights

PC outside the field
wireless

communication

FFN Output

weights  
Fig. 8. Separation of the actual feed-forward network (indicated by FFN in the figure) and the 

back-propagation training algorithm. 
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3.1 Methods 

As has been discussed above, the neural network has to estimate the robot position 
also when slip and/or friction occur. Since the coding of the present problem is but 
trivial, this section provides a detailed description of it. In order to avoid a 
combinatorial explosion, the robot is set at the origin of the coordinate system in 
every iteration. All other values, such as the target position and orientation, are 
relative to that point. 
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Fig. 9. And example configuration for the slip and friction compensation. For details please see 

text. 

Fig. 9 illustrates an example configuration. This configuration considers three robot 
positions labeled “global”, “offset”, and “target”. The first robot corresponds to the 
position as provided by the image processing system. The second position, called 
“offset”, corresponds to the robot’s true position and hence includes the traveled 
distance during the time delay. The third robot symbolizes the robot’s target position. 
As has already been mentioned above, the neural network estimates the robot’s true 
positions (labeled by “offset”) from the target position, the robot’s previous position, 
and its traveled distances. The relative values mentioned above are scaled such that 
they fit into -40 to 40, and all angels are directly coded between 0 and 359 degrees. 
With all these values the input layer has to have seven nodes. 
Due to the limited calculation capabilities of the microcontroller, all values of the 
neural network may be stored in integer quantities. In this format every operation on 
the microcontroller is done in two processing steps because of the mathematical 
coprocessor. For this the feed forward network calculation (FFN) on the robot must 
be adapted. To this end a simulation of different FFNs on a PC provide important 
criteria for the implementation on the robot.  
Foremost different FFN structures compared and the results, they offer valuable clues 
to the structure, illustrated in Fig. 10. All experiments where done with 400 pre-
selected training patterns and 800 test patterns. The initial learning rate was set to 
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1.0=η . During the course of learning, the learning rate was increased by 2% in case 
of decreasing error values and decreased by 50% otherwise. It should be noted that in 
10% of all experiments, back-propagation got stuck in local optima. These runs were 
discarded and are not further considered in this paper. Learning was terminated, if no 
improvement could be achieved over 100 consecutive iterations. 
As you can see the one and two hidden layer networks provide an equivalent 
accuracy. Networks with more hidden layers no be considered due to the fact that the 
calculation power and time is limited. The varieties between the average errors of 
different node counts also low. The outcome of this is that the network structure of 
choice is a one hidden layer network with five nodes. This network is a good 
compromise between network accuracy and calculation time. 

 

Fig. 10. Average error in mm of two and one hidden layer FFNs 

The next step is the adaptation of the selected FFN on the robot. The measurements 
show that all resulting network weights ijwΔ  are in the range of -10 to 10. The 
integer variable on the microcontroller has a range between -32,768 and 32,767. So 
all weights multiplied by 1,000 to fit into the integer range. The input values, i.e., 
global, offset, and target, position are multiplied by 100. The network input of all 
nodes calculated with the formula  
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which is also required in of microcontroller. The calculation of the results is difficult 
to implement because the limited calculation time on the robot. The answer to the 
problem is to store the network’s values in a constant predefined array, because no 
RAM and calculation power is required for the activation function. The input values 
of the array are multiplied by 10 and the output values by 10,000, respectively to 
match the net input inet , the sum is divided by 10,000. The simulation on the PC 
shows that the net input inet  has a maximum range of -10 to 10 thus the array 
consists of 201 values. With these modifications, the calculation of the FFN is 
feasible on the microcontroller. 

3.2 Results 

The compares of the FFN allow the implementation on a small-size league robot. Fig. 
11 shows the average position error in mm without the FFN with the error of the 
FFNs simulated on the PC and on the robot. As can be seen the FFN provides a gain 
of 50% in accuracy. The error caused by the modification of the FFN on the robot is 
less than 8%. 
 

Fig. 11. Average error in mm without FFN, the simulated average error on the PC, and the 
average error on the robot. 

A second measurement evaluates the quality of the correction by driving an 8-shaped 
figure. In this real world test, the robot is controlled by the camera and the PC outside, 
as has been suggested by others [10]. This test environment shows how precise and 
fast the robot can drive. The driven figure has a size of three by one meter and is cut 
into 64 areas. The PC outside the field checks the robot’s position during the 
measurement and sets the new area as target position when the robot has reached the 
area before, so the robot cannot derivate from its way. The results shown in Table 1 
exemplify that the robot’s speed has significant increased on the field via the 
employment of FFN. 
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Table 1. Average time needed to drive the test figure.  

 Robot Robot with History Robot with FFN 
Time 8,2s 6,8s 5,9s 
 
This results show that local wheel sensors implemented on the robot advance the 
accuracy of movement control. But wheel sensors cannot measure slip and friction 
effects. Back-propagation networks can reduce the positioning errors caused by these 
effects, but most microcontrollers and embedded devices cannot provide the required 
calculation power and memory. The adaptation of FFN to accomplish the hardware 
limitations on autonomous robots was also successful. The measurements show that 
only marginal variations between the common FFN and the adapted version occur. 
So, this advancement can be used for further implementations and other 
developments. 
All simulations with different FFN structures and the given input parameters have an 
error of at least 30 mm. At this point, further research may investigate other learning 
and self-adaptive principals, such as Hebbian learning and the implementation of 
short-cuts [4], [11]. Furthermore, the input data can be expanded to all values of the 
history, so that the back-propagation network can also include different acceleration 
data in its calculation. 

4 Conclusions 

The focus of this paper was on the small-size league in which two teams of five 
robots each play soccer against each other. Since no human control is allowed, the 
system has to control the robots in an autonomous way. To this end, a control 
software analyzes images sent by two cameras and derives appropriate control 
commands for all team members. 
Unfortunately, the image processing system exhibits various time delays at different 
stages, which leads to erroneous robot behavior. Section 2 has shown how local 
sensors compensate those effects. 
The omnidirectional drives used by most research teams exhibit certain inaccuracies 
due to two physical effects called slip and friction. Section 3 has indicated that neural 
networks are able to significantly improve the robot’s behavior with respect to 
accuracy, drift, and response. 
Furthermore, the architectures presented here still require hand-crafted adjustments to 
some extent. In addition, the resources available on the mobile robots significantly 
limit the complexity of the employed networks.  
First of all, future research will be addressing the problems discussed above. For this 
goal, the incorporation of short-cuts into the back-propagation networks seems a 
promising option. Another important aspect will be the development of complex 
controllers that would fit into the low computational resources provided by the robot’s 
onboard hardware. 
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