
Local Movement Control with Neural Networks in the
Small-Size League

Steffen Prüter, Ralf Salomon, and Frank Golatowski

University of Rostock, Faculty of Computer Science and Electrical Engineering, Institute of
Applied Microelectronics and Computer Engineering, 18051 Rostock, Germany

{steffen.prueter, ralf.saloman, frank.golatowski}@uni-rostock.de

Abstract. In the RoboCup small-size league, it is common to calculate the
robot’s position calculated via a camera over the field as well as different kinds
of artificial intelligence that’s run on a PC outside the field. In this case, the
robot’s position must be predicted because of the various delays until the
position data arrived at the robot. This paper focuses on the use of local sensors
on the robot and a neural network to estimate the robot’s actual position. This
paper shows how local sensors can compensate for the effect of latency times
and how robot’s actual position can ascertained. Slip and friction effects that
cannot be measured with local sensors are adjusted by a neutral network.

1 Introduction

RoboCup [1] small-size league is of particular interest, because it combines
engineering tasks, such as building robot hardware and designing electronic
components, with computer science applications, such as localization of objects,
finding the robots’ positions, and calculating the best path through obstacles. Another
interesting challenge emerges from the requirement that all team members have to
communicate with each other in order to develop a cooperative behavior. Research on
artificial intelligence may help find the optimal solution in all of these areas.

control
PC

control
PC

team 1 team 2

Fig. 1. The physical setup in RoboCup’s small-size league.

2 Steffen Prüter, Ralf Salomon, and Frank Golatowski

Fig. 1 show two cameras mounted approximately four meters above the floor and
observe the field of four by five meters in size on which two teams consisting of five
robots play. The processing sequence starting at the camera image and ending at the
robots executing their received (action) commands suffers from significant time
delays, as Fig. 2 illustrates.

firewire
memory image

analysing strategie
DECT

camera control PC robot

Fig. 2. The image processing system consists of five stages which all contribute to processing

delays also known as latency time.

These time delays have the consequence that when receiving a command, the robot’s
current position does not correspond to its position in the camera image.
Consequently, the actions are either inaccurate or may even lead to improper behavior
in the extreme case. For example, the robot may try to kick the ball even though it is
not in reach anymore.
Section 2 discusses how the position correction can be further improved on the robot
itself and how local sensors can alleviate this problem to a large extent.

x

y

αα

wh
ee

l 1

wheel 2

wheel 3

F2 F2y

F1yF1

F3

α

α

Fig. 3. An omnidirectional drive with its calculation model.

Fig. 3 shows the omnidirectional drive commonly used by most robots of the small-
size league. As can be seen, an omnidirectional drive consists of three wheels, which
are twisted to each other by 120 degrees. This drive has the advantage that a robot can
be simultaneously doing both moving forward and spinning around its own central
axis. Furthermore, the particular wheels, as shown on the left-hand-side of Fig. 3,
yield high grip in the rotation direction, but almost-vanishing friction perpendicular to
it. The specific orientation of all three wheels, as illustrated on the right-hand-side of
Fig. 3, requires advanced controllers and exhibit higher friction than standard two-

Local Movement Control with Neural Networks in the Small-Size League 3

wheel drives. The later requires sophisticated servo loops and (PID1) controllers [9].
Depending on the carpet and the resulting wheel-to-carpet friction, one or more
wheels may slip. As a consequence, the robot leaves its recalculated moving path. To
this end, a robot employs its own back-propagation network to learn its own specific
slip and friction effects. Section 0 concludes this paper with a brief discussion
including possible future research.

2 Local Sensors

As has been outlined in the introduction, the latency caused by the imaging-
processing-and-action-generation loop leads to non-matching robot positions. As a
measurable effect, the robot starts oscillating, turning around the target position,
missing the ball, etc. An approach to solve the latency problem is to do the
compensation calculation on the robot itself. The main advantage of this approach is
that the robot's wheel encoders can be used to obtain additional information about the
robot’s actual behavior. However, since the wheel encoders measure only the wheel
rotations, they cannot sense any slip or friction effects directly.

2.1 Latency time

RoboCup robots are real-world vehicles rather than simulated objects. Therefore, all
algorithms have to account for physical effects, such as inertia and delays, and have to
meet real-time constraints. Because of the real-time constraints, perfectly exact
algorithms would usually require too much calculation time. Therefore, the designer
has to find a good compromise between computational demands and the precision of
the results. In other words, fast algorithms with a just decent precision are the method
of choice here [2], [3].
As has already been mentioned in the Introduction, the latency is caused by various
components including the camera’s image grabber, the image compression algorithm,
the serial transmission over the wire, the image processing software, and the final
transmission of the commands to the robots by means of the DECT modules. Even
though the system already uses the compressed YUV411 image format [5], the image
processing software as well as the DECT modules are the most significant parts with
a total time delay of about 200ms. For the top-level control software, which is
responsible for the coordination of all team members, all time delays appear as a
constant-time lag element. The consequences of the latency problem are further
illustrated in Fig. 4 and Fig. 5.

1 PID is the abbreviation of proportional-integrate-differential. For further detail, the interested

reader is referred to [9]

4 Steffen Prüter, Ralf Salomon, and Frank Golatowski

 t 0 true position while
image grabbing

t 2 true position when data
received by the robot

ball

t 1 true position when
image is analyzed

calculated position after
image analysis

position send to the
robot

Fig. 4. Due to the latency problem, the robot receives its commands at time t2 , which actually

correspond to the image at time t0.

Fig. 4 illustrates the various process stages and corresponding robot positions. At time
t0, the camera takes an image with the robot being on the left-hand-side. At the end of
the image analysis (with the robot being at the old position), the robot has already
advanced to the middle position. At time t2, the derived action commands arrive at the
robot, which has further advanced to the position 2t to the right-hand-side. In this
example, when being in front of the ball, the robots receive commands which actually
belong to a point in time in which the robot was four times its body length away from
the ball. Fig. 5 illustrates how the time delay between image grabbing and receiving
commands leads to an oscillating behavior at dedicated target positions (marked by a
cross in the figure) [6], [7], [8], [10].

Data in
servo loop

Real robot
position

Robot stay Robot
accelerate

Robot reach
position

Servo loop
send stop Robot stops

Fig. 5. Problem of stopping the robot at a desired point.

2.2 Experimental Analysis

In order to compensate for the effects discussed above, the knowledge of the exact
latency time is very important. The overall latency time was determined by the
following experiment:

Local Movement Control with Neural Networks in the Small-Size League 5

The test software was continuously sending a sinusoidal drive signal to the robot.
With this approach, the robot drives 40cm forward and than 40cm backwards. Then,
the actual robot position as was seen in the image data was correlated with the control
commands. As Fig. 6 shows, the duration of the latency time is seven time slots in
length, which totals up to 234ms with 30 frames send by the camera.

 position command

52

100

94
98

95
78
65

98

87
76

98

99
101

64

94

96

Lateny time = 7 control cycles Control cycles
6 87 9 10

50

3
19

0
17
34

36

15
delay histogram

nu
m

be
r o

f i
te

ra
tio

ns

Fig. 6. Detection of the Latency time in the control loop

It might be worthwhile to mention here that for technical reasons, the time delay of
the DECT modules is not constant; the jitter is in the order of up to 8ms. The values
given above are averages over 100 measurements.

2.3 Increased Position Accuracy by Local Sensors

In the ideal case of slip-free motion, the robot can extrapolate its current position by
combining the position delivered by the image processing system, the duration of the
entire time delay, and the traveled distance as reported by the wheel encoders. In
other words: in case slip does not occur, the robot can compensate for all the delays
by storing previous and current wheel tick counts. This calculation is illustrated in
Fig. 7.

6 Steffen Prüter, Ralf Salomon, and Frank Golatowski

1
2

3
4

5

y offset

x offset
camera
position

corrected robot
position

∑
=

=
latency

i
ioffset hyy

1

∑
=

=
latency

i
ioffset hxx

1

Fig. 7. Extrapolation of the robot’s position using the image processing system and the robot’s

previous tick count.

Since the soccer robots are real-world entities, they also have to account for slip and
friction, which are among other things, nonlinear and stochastic by nature. The
following section employs back-propagation networks to account for those effects.

3 Embedded Back-Propagation Network

Due to the resource limitations of the robot hardware, the number of nodes and
connections that the robot can store on its hardware is quite limited. From a hardware
point of view, the memory available on the robot itself is the major constraint. In
addition to the actual learning problem, this section is also addresses the challenge of
finding a good compromise between the network’s complexity and its processing
accuracy.
A second constraint to be taken into account concerns the update mechanism of the
back-propagation learning algorithm. As is well known, back-propagation temporarily
stores the calculated error sums as well as all the weight changes ijwΔ [4]. This leads
to a doubling of the memory requirements, which would exhaust the robot’s onboard
memory size even for moderately sized networks. As a workaround, this section
stores those values on the central control PC and communicates the weight changes
by means of the wireless communication facility. This separation is illustrated in Fig.
8.

Input

FFN Output

set weights

microcontroller on the robot

Error Backpropagation

FFN Copyweights

PC outside the field
wireless

communication

FFN Output

weights
Fig. 8. Separation of the actual feed-forward network (indicated by FFN in the figure) and the

back-propagation training algorithm.

Local Movement Control with Neural Networks in the Small-Size League 7

3.1 Methods

As has been discussed above, the neural network has to estimate the robot position
also when slip and/or friction occur. Since the coding of the present problem is but
trivial, this section provides a detailed description of it. In order to avoid a
combinatorial explosion, the robot is set at the origin of the coordinate system in
every iteration. All other values, such as the target position and orientation, are
relative to that point.

offsetx
of

fs
et

y

offsetangel

targetx

targetangel

ta
rg

et
y

globalangel

robot

target position

Fig. 9. And example configuration for the slip and friction compensation. For details please see

text.

Fig. 9 illustrates an example configuration. This configuration considers three robot
positions labeled “global”, “offset”, and “target”. The first robot corresponds to the
position as provided by the image processing system. The second position, called
“offset”, corresponds to the robot’s true position and hence includes the traveled
distance during the time delay. The third robot symbolizes the robot’s target position.
As has already been mentioned above, the neural network estimates the robot’s true
positions (labeled by “offset”) from the target position, the robot’s previous position,
and its traveled distances. The relative values mentioned above are scaled such that
they fit into -40 to 40, and all angels are directly coded between 0 and 359 degrees.
With all these values the input layer has to have seven nodes.
Due to the limited calculation capabilities of the microcontroller, all values of the
neural network may be stored in integer quantities. In this format every operation on
the microcontroller is done in two processing steps because of the mathematical
coprocessor. For this the feed forward network calculation (FFN) on the robot must
be adapted. To this end a simulation of different FFNs on a PC provide important
criteria for the implementation on the robot.
Foremost different FFN structures compared and the results, they offer valuable clues
to the structure, illustrated in Fig. 10. All experiments where done with 400 pre-
selected training patterns and 800 test patterns. The initial learning rate was set to

8 Steffen Prüter, Ralf Salomon, and Frank Golatowski

1.0=η . During the course of learning, the learning rate was increased by 2% in case
of decreasing error values and decreased by 50% otherwise. It should be noted that in
10% of all experiments, back-propagation got stuck in local optima. These runs were
discarded and are not further considered in this paper. Learning was terminated, if no
improvement could be achieved over 100 consecutive iterations.
As you can see the one and two hidden layer networks provide an equivalent
accuracy. Networks with more hidden layers no be considered due to the fact that the
calculation power and time is limited. The varieties between the average errors of
different node counts also low. The outcome of this is that the network structure of
choice is a one hidden layer network with five nodes. This network is a good
compromise between network accuracy and calculation time.

Fig. 10. Average error in mm of two and one hidden layer FFNs

The next step is the adaptation of the selected FFN on the robot. The measurements
show that all resulting network weights ijwΔ are in the range of -10 to 10. The
integer variable on the microcontroller has a range between -32,768 and 32,767. So
all weights multiplied by 1,000 to fit into the integer range. The input values, i.e.,
global, offset, and target, position are multiplied by 100. The network input of all
nodes calculated with the formula

j
i

iji ownet ∑=

is a weighted sum of all nodes j to which it is connected by weight ijwΔ . Hence the
node input inet on the microcontroller is factor 1,000 ⋅ 100=100,000 higher than on
the PC side. As an exception, the node input stored as long integer in consequence of
the possible high range. The neural network learning process on the PC side
calculates with floating point arithmetic to evaluate the sigmoid function and the node
output

)1/(1 inet
i eo −+= ,

0

5

10

15

20

25

30

35

40

45

50

9:3 15:5 30:10 6:3 10:5 20:10 3 5 10
node count

Local Movement Control with Neural Networks in the Small-Size League 9

which is also required in of microcontroller. The calculation of the results is difficult
to implement because the limited calculation time on the robot. The answer to the
problem is to store the network’s values in a constant predefined array, because no
RAM and calculation power is required for the activation function. The input values
of the array are multiplied by 10 and the output values by 10,000, respectively to
match the net input inet , the sum is divided by 10,000. The simulation on the PC
shows that the net input inet has a maximum range of -10 to 10 thus the array
consists of 201 values. With these modifications, the calculation of the FFN is
feasible on the microcontroller.

3.2 Results

The compares of the FFN allow the implementation on a small-size league robot. Fig.
11 shows the average position error in mm without the FFN with the error of the
FFNs simulated on the PC and on the robot. As can be seen the FFN provides a gain
of 50% in accuracy. The error caused by the modification of the FFN on the robot is
less than 8%.

Fig. 11. Average error in mm without FFN, the simulated average error on the PC, and the
average error on the robot.

A second measurement evaluates the quality of the correction by driving an 8-shaped
figure. In this real world test, the robot is controlled by the camera and the PC outside,
as has been suggested by others [10]. This test environment shows how precise and
fast the robot can drive. The driven figure has a size of three by one meter and is cut
into 64 areas. The PC outside the field checks the robot’s position during the
measurement and sets the new area as target position when the robot has reached the
area before, so the robot cannot derivate from its way. The results shown in Table 1
exemplify that the robot’s speed has significant increased on the field via the
employment of FFN.

0

20

40

60

80

100

120

without FFN FFN on PC FFN on robot

10 Steffen Prüter, Ralf Salomon, and Frank Golatowski

Table 1. Average time needed to drive the test figure.

 Robot Robot with History Robot with FFN
Time 8,2s 6,8s 5,9s

This results show that local wheel sensors implemented on the robot advance the
accuracy of movement control. But wheel sensors cannot measure slip and friction
effects. Back-propagation networks can reduce the positioning errors caused by these
effects, but most microcontrollers and embedded devices cannot provide the required
calculation power and memory. The adaptation of FFN to accomplish the hardware
limitations on autonomous robots was also successful. The measurements show that
only marginal variations between the common FFN and the adapted version occur.
So, this advancement can be used for further implementations and other
developments.
All simulations with different FFN structures and the given input parameters have an
error of at least 30 mm. At this point, further research may investigate other learning
and self-adaptive principals, such as Hebbian learning and the implementation of
short-cuts [4], [11]. Furthermore, the input data can be expanded to all values of the
history, so that the back-propagation network can also include different acceleration
data in its calculation.

4 Conclusions

The focus of this paper was on the small-size league in which two teams of five
robots each play soccer against each other. Since no human control is allowed, the
system has to control the robots in an autonomous way. To this end, a control
software analyzes images sent by two cameras and derives appropriate control
commands for all team members.
Unfortunately, the image processing system exhibits various time delays at different
stages, which leads to erroneous robot behavior. Section 2 has shown how local
sensors compensate those effects.
The omnidirectional drives used by most research teams exhibit certain inaccuracies
due to two physical effects called slip and friction. Section 3 has indicated that neural
networks are able to significantly improve the robot’s behavior with respect to
accuracy, drift, and response.
Furthermore, the architectures presented here still require hand-crafted adjustments to
some extent. In addition, the resources available on the mobile robots significantly
limit the complexity of the employed networks.
First of all, future research will be addressing the problems discussed above. For this
goal, the incorporation of short-cuts into the back-propagation networks seems a
promising option. Another important aspect will be the development of complex
controllers that would fit into the low computational resources provided by the robot’s
onboard hardware.

Local Movement Control with Neural Networks in the Small-Size League 11

References

[1] http://www.robocup.org (Official Website).
[2] A. Gloye, M. Simon, A. Egorova, F. Wiesel, O. Tenchio, M. Schreiber, S. Behnke, and

R. Rojas: Predicting away robot control latency, Technical Report B-08-03, FU-Berlin,
June 2003.

[3] J. Zagal, and J.Ruiz-de-Solar, Learning to Kick the Ball Using Back to Reality,
RoboCup-2004: Robot Soccer World Cup VIII, Springer, 2004

[4] R. Rojas: Neural Networks - A Systematic Introduction, Springer-Verlag, Berlin, 1996.
[5] J. C. Russ, The Image Processing Handbook, Fourth Edition, CRC Press, 2002
[6] J.C.Alexander and J.H. Maddocks, On the kinematics of wheeled mobile robots,

Autonomous Robot Vehicles, Springer Verlag, pp.5-24, 1990.
[7] A. Miene, U. Visser, and O. Herzog, Recognition and Prediction of Motion Situations

Based on a Qualitative Motion Description, RoboCup-2003: Robot Soccer World Cup
VII, Springer, 2003

[8] R. Balakrishna, and A. Ghosal, Two dimensional wheeled vehicle kinematics, IEEE
Transaction on Robotics and Automation, vol.11, no.l, pp.126-130, 1995

[9] K. J. Astrom, T. Hagglund, PID Controllers: Theory, Design, and Tuning, International
Society for Measurement and Con; 2nd edition, 1995

[10] A. Gloye, C. Göktekin , A. Egorova, O. Tenchio, and R. Rojas, Learning to Drive and
Simulate Autonomous Mobile Robots, RoboCup-2004: Robot Soccer World Cup VIII,
Springer, 2004

[11] T. Bäck, B. Fogel, and Z. Michalewicz, Evolutionarily Computation 1: Basic
Algorithms and Operators, Bristol UK: Institute of Physics Publishing, 2000

