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Abstract—User localization information is an important data 

source for ubiquitous assistance in smart environments and other 

location aware systems. Mostly there is a need for non-invasive, 

wireless, privacy preserving technologies. Device-free localization 

approaches (DFL) provide these advantages with no need for 

user-attached hardware.  

A common goal within the research of DFL technologies is the 

distinction and tracking of multiple users in an indoor scenario. 

In our recent work we show that DFL approaches utilizing 

completely passive RFID transponders can localize one person 

very precisely.   

In this work we show basic approaches and conduct first 

experiments in an indoor room DFL scenario for proof of 

concept and validation. We show that it is possible to distinguish 

between two users with reasonable precision and computation 

demand. 
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I.  INTRODUCTION  

 

A big challenge in today’s ubiquitous smart technology 

research is the position estimation of users in indoor 

environments. User Recognition and Intention Recognition are 

the superimposed steps for generating intelligent assistance. 

Sensors which are gathering the information need to be 

invisible and privacy preserving. Therefor much work was 

done in the field of Device-free localization (DFL) utilizing 

wireless radio devices which are installed in the room. The 

user does not need to wear any attached hardware. 

In our recent work we introduce an approach for radio based 

DFL by replacing most of the active radio beacons used in 

similar situated approaches with completely passive Radio 

Frequency Identification (RFID) transponders. That combines 

the advantages of energy efficiency, because the transponders 

do not need batteries, and very easy deployment. RFID 

transponders can very easily be placed i.e. under the carpet, on 

furniture or behind the wallpaper.  

Another big advantage are the costs: RFID transponders can 

be purchased very cheap, as low as 0.20 € per item.  

Based on that, multiple localization algorithms were proposed 

in the past providing positioning results with an error as low as 

0.3 m in 2D scenarios[1–3]. 

The available approaches only work with one person within 

the measurement area. But for real world appliances it is very 

important to calculate reasonable positioning results even 

when there is more than one person in a room.  

In this paper we describe the existing approach in section II 

and its behavior in a two-person scenario in section III. Also 

we describe possible methods to distinguish between the users 

and to facilitate position estimation. 

The setup and the results of a first experimental validation are 

shown in the fourth chapter, followed by benefits for smart 

environment services and our conclusions. 

 

II. RELATED WORK 

A. Passive RFID Positioning 

Dealing with the problem of energy efficiency and 

deployment complexity we invented an approach utilizing 

ground mounted passive Radio Frequency Identification Tags 

(RFID) for device-free radio-based recognition[1], [3], [4]. 

This work has shown that it is possible to calculate 2D user 

positions with remarkable accuracy [4] and low computational 

complexity. 

Using typical RFID hardware provides less signal processing 

possibilities than typically used wireless sensor nodes. For this 

reason our measurements regards the Received Signal Strength 

Indicator (RSSI) with can be regarded as a linear 

transformation of the original signal strength value.  

As shown in [5] the presence of the human body does strongly 

affect the communication between the RFID reader hardware 

and the passive transponders. This can be modeled as[5]:  
 

               (    )       
    (

  

 
          )                 (1) 

 

with ∆P as estimated RSSI change, wave length λ and phase 

shift      . The parameters A,B are subject to the multipath 

fading properties of the experimental environment[6]. 

Therefore the model needs to be re-adjusted for every new 

setup.  

The path difference      between the Line-of-sight (LOS) and 

the Non-Line-of-sight (NLOS) path is determining the relative 

position of a scattering user towards a specific communication 

link. The influence is shown in Fig. 1. 
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Figure 1. Theoretical model regression and experimental data 

points from multiple transponder scenario 

 

Based on this model different methods for the localization of 

users were investigated in the past: 

 Database based localization: minimizing a log-

likelihood-function from the difference between an 

expected change of signal strength and the measurement. 

The results provide a maximum RMSE of 0.75 m[1].  

 Geometric localization based on Linear Least Squares 

and Intersection Points applied on the measured signal 

strength differences. The results provide lower accuracy 

at approximately 1.61 m, while having a lower 

computational complexity[1].  

 Training based approaches, e.g. Multi-layered 

Perceptrons (MLP) [5], [6]. A three layered MLP getting 

the RSSI differences into its input layer and providing a 

2D user position out of the output layer. Evaluating 

different training functions and layered transfer functions 

it is possible to achieve accuracies as low as 0.01m MSE 

in a ground mounted pRFID scenario. 

 

B. Passive RFID Tomography (PRT) 

In our recent works [2], [4] wireless sensor network based 

radio tomographic imaging [7], [8] and pRFID DFL were 

combined. The setup consists of waist-high mounted passive 

transponders placed around the discretised measurement area. 

The RFID antennas are placed directly behind the transponder 

lines to guarantee a maximum power transfer.  

The imaging result is calculated by using the model of Wilson 

et.al.[8]: 

             ∆y=W∆x+n                           (2) 

 

with ∆y as matrix of RSS differences in dB, W as pre-

calculated weighting matrix for every pixel-link-combination, 

n as zero mean gaussian noise vector and ∆x as matrix of pixel 

attenuations. 

In Figure 2 sample images of the algorithm are illustrated, the 

center of the maximum pixel value is regarded as the most 

probable user location. The algorithm can locate human with  

 

as low as 0.3 m mean location error. In [2] we propose 

multiple improvements for performance and online operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Figure 2. Passive RFID Tomographic Images 

 

III. METHODS 

 

The experimental area is defined by an image vector 

consisting of N pixels. When a person is affecting specific 

links in that network (see Fig. 1), that attenuation is regarded 

as the sum of attenuation each pixel contributes[4].  

The attenuation is measured as the received signal strength for 

every transponder-antenna combination. Due to the RFID 

protocol[7] it is difficult to set a stable power value for every 

transponder. Therefore a 2 phase measurement was conducted: 

a calibration phase with no user presence and a measurement 

step with scatterer in the field. The measurement vector is 

built by  
 

                                               (3) 
 

with signal strength y and RSSI difference vector ∆y. 

The most important part of the PRT method is the image 

reconstruction since the problem is ill-posed. The authors 

handle this by using regularization techniques. The resulting 

image estimation formula can be written as[8]:  
 

   (      
  )        (4) 

 

In this formula    denotes a covariance vector providing 

information about the dependence of neighboring pixels due to 

a zero-mean Gaussian random field [9]:  
 

                                            
                                        (5) 

 

with the voxel-voxel distance d and a correlation term   

determining the impact of dependence of neighboring pixels. 

We have to use a weighting model only regarding the 

backward link between transponder and antenna because due 

to the experimental scenario a user can only affect this path. 

The forward link is regarded only as sending power supply. 

Regarding the model of [8] it can be described as 

    Real   position          Estimated  position       RFID Transponder 
     RFID Reader 
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for the backward link, where     is the Euclidean distance 

between transmitting reader antenna   , receiving reader 

antenna    and transponder   of link  . The ellipse width 

surrounding each link is variable by  . 

 

 
 

               Figure 3. Influence of 2 scatterer on the field 

 

Basic estimation for all further evaluation is the estimated 

pixel picture due to (4)   . Within one-user scenarios the 

maximum image pixel is used for user center estimation.  

In multi-user scenarios multiple hotspots arise in the 

calculated picture. As you can see in Fig. 3 so called Ghosts 

can be derived, because affected links meet multiple times due 

to our specific geometry. There are diverse techniques 

required to separate the true positions and the ghost positions, 

some approaches are described below: 

 

A. Maximum Removal Iteration (MRI) 

High loss areas with high impact on the link measurement 

matrix are generally appearing where true obstacles are 

shadowing a higher number of communication links. Due to 

the geometry of our RFID setup the link density is not 

constant over the whole measurement field. Due to that 

affected links are intersecting multiple times in the field. 

Because the picture is calculated out of a link to pixel 

correlation there intersecting points also result in hot spots.  

In this approach the first position estimate is the maximum 

pixel in the whole field. Due to the geometric properties of the 

link density the “ghost” result areas have a little smaller 

diameter and lower absolute values (cp. Fig 3). 

Therefore we search for the first estimate by simply taking the 

center of the maximum pixel value as first position estimate: 

 

 ( )         (  )                        (7) 

 

After getting that maximum all correspondent link affections 

needs to be removed from the measurement matrix and 

replaced by calibration values. Therefor we need the 

corresponding links   due to our weighting definition 

 

         (   ( ) ( )     ( )  ( )    ( )  ( )         )  (8) 

 

 

and replace them with the calibration value. 

 

  (     )                                        (9) 

 

This procedure is now being iterated until a defined picture 

idle variance        (  ) is reached. This variance has to be 

calculated in every iteration step. 

B. Polygon Distance Estimation (PDE) 

As mentioned in [1] geometric estimation algorithms generally 

perform with acceptable performance but very low 

computational complexity.  

The idea is to span a virtual polygon with edges on the 

calculated hot spots of matrix    (cp. Fig. 4). 

 

 
 

Figure 4. PDE Examples 

 

Having calculated the    edge points of the polygon we define 

the estimated user positions as intersection point with the 

maximum Euclidean Distance to each other: 

 

 ( )         ( √∑ (  ( )    ( )) 
 
)        (10) 

Due to the field geometry, the ghost spots are always situated 

within the inner field belonging to the real user positions. 

Therefor they have a typically lower distance to each other. 

 

C. Multi-layer Perceptron Estimation (MLPE) 

In recent works[3] we show that training based approaches can 

perform very good, if the requirements of model based 

techniques are not complied sufficiently.  

We try to estimate the two user positions with the help of a 3-

layerd perceptron which gets the    data stream as its input. 

The hidden layer size has to be chosen due to the tradeoff 

between computational complexity if its larger, and degrees of 

freedom if its smaller. In [3] we found out that       is a 

good compromise.  
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Figure 5. MLP with continuous estimation output 

 

 

The neurons are calculating its output due to the following 

equation:  

     (      )                        (11) 

 

with W and B as vectors of offline trained weighting and bias 

values.  ( ) is denoting a chosen transfer function which 

should be a combination of a logarithmic sigmoid and a linear 

function to get best results.  
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Figure 6. MLP with discrete position output 

 

In this paper we investigate two principle Neural Network 

techniques: first shown in Fig. 5 the output layer provides 2 

defined position coordinates. It is also possible to predefine 

possible user positions on the field and regard them as 

Boolean outputs of the perceptron (cp. Fig.6). So the output 

has just to be noise-filtered for getting clear true and false 

values. 

 

IV. VALIDATION 

A. Experimental Setup 

The experimental setup is illustrated in Figure 7. It consists of 

three major parts: a passive UHF RFID system, a network 

layer and the processing workstation. We use a bistatic UHF 

reader from Alien Technology®[10] working in the ISM 868 

MHz frequency band. For transponder powering and the 

backward link communication four linear polarized UHF 

antennas with a gain of 6 dBiL and a 70 degree azimuth 

beamwidth are connected to its ports. For measurements we 

installed a square field (edge length: 3.5m) of hip height 

mounted UHF transponders with a 96-bit EPC[11] compliant 

memory holding a unique identification number. 

 

 
Figure 7. Experimental setup and system structure 

 

The RFID system is connected via ethernet to the operating 

workstation. Every transponder answer is repeated via TCP 

packets to the workstation for further evaluation. The 

processing station is a Unix running PC with an 

Intel®Core™2 Quad CPU @ 4*3GHz. 

The EPCglobal[11] Radio-Frequency Identity Protocol for 

Class-1 Generation-2 UHF RFID communication at 860-960 

MHz defines baseband operations to address a smaller subset 

of RFID transponders. Therefore bit masking instructions are 

available in the readers API. Typically we have changing 

transponder group members due to the current position 

estimation. Therefore the individual 96-Bit EPC key is divided 

into hexadecimal subgroups used for group division. 

As reference localization algorithm we used the pRFID 

tomography approach from Wagner et Patwari [2][4]. The 

evaluation script is an integrated Java/Matlab®-Script 

containing the RFID communication structure in Java and the 

evaluation code in the Matlab part. 

 

B. Measurement Procedure 

We placed 40 transponders in a square with the length of 3.1 

m on the height of 0.85 m. In the middle of that square we 

defined 8 possible user locations. Fig. 8 shows the 

experimental setup. We measured 4 typical user position 

combinations for our 2-user scenario: 

 

  {[   ] [   ] [   ] [   ]} 
 

In this deployment every reader antenna is powering the 

transponder-line in front of it. This ensures a maximum power 

transmission to the transponders. 

The transponders are sending their data to each of the other 

reader antennas. Hence the operating sequence is defined as 

follows: 
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    {[   ] [   ] [   ] [   ]}             (12) 
 

with the following annotation:  
 

[Transmitting Antenna, Receiving Antenna]. 
 

We did a calibration measurement for every transponder-AS 

combination with a minimum of 20 data samples to get a 

reliable mean signal strength value.  

For the measurement phase we implemented a bitmasking 

algorithm, which allows us to communicate with each single 

transponder. Thus we defined one spin round by having data 

samples from every transponder. We emphasized the length of 

each measurement round, to get a minimum of 10 data 

samples per transponder-reader antenna combination.  
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Figure 8. Experimental system structure 

 

 

C. Results 

Calculating the tomographic reference pictures shows the 

expected view with ghost hot spots within the measurement 

area. In Figure 9 you can see these images for 2 example 

measurement scenarios.  

The MRI algorithm works hardly fine, because it has some 

problems with high variance pictures and ghosts with a higher 

diameter. The key problem is the first estimate with a 

detection rate of appr. 50%. The results after the first position 

estimate are also shown in Fig. 9.  

PDE performs much better with a detection ratio of nearly 

100% it reaches a much lower location error.  

 

 

 

 

 

 
Table 1. Comparison of mean location errors 

 

The MLPE approach in its two versions is not really 

comparable with the other mentioned approaches. A high 

amount of training data leads to a detection rate of 100%. It 

has to be said, that this scenario can be performed very well 

with training based methods. The continuous version of the 

neural network even the binary version can estimate the 

original positions very accurate, but a high amount of training 

data is needed.  

 

 

  
 

Figure 9. Reference picture (left) and MRI second phase (right) 

for a 2-User measurement 

 

 

V. BENEFITS FOR SMART ENVIRONMENT SERVICES 

Smart environmental services like ambient assisted living 

(AAL), i.e. for elderly care or home automation strongly rely 

on context information, mainly user position information. This 

includes static position estimates and real time tracking 

trajectories. Superimposed intention recognition systems rely 

on that data to deduce strategies for  user specific assistance 

provision. 

These environmental services, especially in an indoor 

environment, can benefit from user independent localization 

technologies, because of their non-invasive, privacy 

preserving structure. As already said in the introduction the 

RFID approach furthermore combines the advantages of easy 

deployment and low cost. Taking these technical advantages 

into account, it is possible to provide ubiquitous assistance 

even for older people in their familiar environment or in home 

environments, were complex hardware has to be invisible. 

The scope of this works enhances recent feasibility studies on 

the field of device-free RFID localization by the possibility of 

multi-user recognition. This is a necessary feature, because 

usually there are user groups interacting in smart 

environments. Thus the distinction and independent tracking 

of multiple users is a key functionality for superimposed 

environmental services. 

Approach Mean error  [m] 

MRI 1.2759 

PDE 0.2964 

MLPE low 
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VI. CONCLUSION & FUTURE WORK 

After conducting first experiments in a multi-user scenario and 

implementing the described approaches it has to be stated that 

it is possible to distinguish between 2 users and localize them 

with reasonable accuracy. The geometric approach performs 

best, but only under fixed geometric conditions. It is also 

possible to reach high accuracy with training based methods, 

but the amount of training data is very high. Possibly 

environmental changes on the experimental infrastructure can 

have a strong influence on these results.  

In future a limit of users needs to be investigated, because the 

picture noise rises with a growing number of users in the 

measurement area. Another interesting point are tracking 

filters if the number of individuals is known.  
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