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Abstract. Providing location information while people move through a
indoor environment is fundamental to smart environments. While many
works address this problem, which is often referred to as tracking, the
complex radio propagation and the need smart and unobtrusive localiza-
tion system still represent challenges to current approaches.
We investigate through simulations the applicability of tracking a user
with a passive RFID-System. The distinction to former approaches is
that we do not constrain the user to wear any electronic devices to help
localization. Our approach rather focuses on measuring the variations of
signal strength which are caused by a human. For this purpose, we have
spotted passive RFID to be very useful since the tags can be placed al-
most on any surface to measure the spatial distribution of the variations.

1 Introduction

The location of users and devices in smart environment has long been spotted
as fundamental contextual information and, therefore, algorithms like intention
recognition and task planning build on robust and accurate location information.

However, localization, the process of acquiring and tracking the location of
users and devices using wireless communication, has to deal with several is-
sues. Many existing approaches use the Time-of-Flight (ToF), Angle-of-Arrival
(AoA) or received signal strength (RSS) to infer distances or directions to the
target. However, the complex radio propagation in indoor environments repre-
sents a challenge for these methods since the aforementioned metrics are typically
severely affected by multi path and interference of radio waves. For this reason,
commercial localization systems use several metrics and fuse them to improve
localization accuracy.

Observing that some of the negative effects on radio propagation are caused
by the target to be tracked itself, an approach to track back these changes in
order to localize a user has been reported to be feasible [1]. The distinction to
previous approaches is that the user does not need to wear any communication
devices and the resolution of the system can be adjusted by adding inexpensive
passive tags.

The objective of the current paper is to investigate the applicability of this
approach to tracking of the user with a particle filter. Special attention is paid to



Table 1. Overview of related work.

Passive Tags Measurement Transceiverless Target Link Type

User/Object Localization
Landmarc [2] No RSS No monostatic
SpotOn [3] No RSS No monostatic
Ferret [4] Yes Connectivity No bistatic

Robot Self-Localization
Schneegans [5] Yes Connectivity No bistatic
Hhnel [6] Yes Connectivity/LR No bistatic

WSN Localization using RF-Propagation Effects
Zhang et al. [7,8] - RSS Yes monostatic
Patwari et al. [9] - RSS Yes monostatic
curr. approach Yes RSS Yes bistatic

the sampling rate of the system which is a limiting parameter of our test bed and
a function of number of passive RFID-Tags. Specifically, we aim at determining
the minimum sampling rate of the system for which tracking still works with
acceptable accuracy.

The rest of the paper is organized as follows. Section 2 reviews related works.
Sections 3 and 4 reviews the theoretical models, their applicability to the current
approach and introduces the particle filter framework. In Section 5, we present
the set-up and results of simulations and draw conclusions on the applicability
of a particle filter for tracking

2 Related Work

Although the Global Positioning System (GPS) has been accepted as a reliable
localization system for outdoor environments, its capabilities are very limited
indoors since the satellite signals are typically strongly attenuated by walls and
ceiling. Furthermore, in indoor environments a feasible localization system has
to distinguish locations inside rooms and, therefore, an accuracy in the meter
domain is expected.

The existing approaches to indoor localization can be classified in several
ways: By the type of measurement, for example optical, ultrasound, infrared,
pressure, RSS. Another distinction can be made concerning the system archi-
tecture, for example, whether the target can communicate over bidirectional or
unidirectional links with the localization system. In some cases, the target does
not need to carry a dedicated device to be located which makes these approaches
especially interesting for ubiquitous environments.

Related to the distinction between uni- and bidirectional links is the distinc-
tion between monostatic and bistatic systems. In contrast to bistatic systems
which use separate antennas for transmitting and receiving, monostatic sys-
tems have collocated transmitting and receiving antennas. Being either mono-



or bistatic has strong impact on RSS-based localization with passive RFID be-
cause the mapping of RSS to distance is different. In addition, connectivity in
bistatic systems depends on two physically different links as will be explained in
greater detail later.

In contrast to our approach, Ni et al. utilize an active RFID-system for local-
izing a mobile target that has RFID tags attached [2]. The stationary deployed
RFID-readers compare the measured power level of reference tags to improve
localization performance.

Another well-known localization system using RFID is SpotOn. SpotOn re-
searchers have designed and built custom hardware that serves as tags for lo-
calization. A 3D-localization algorithm uses the RSS readings between tags to
determine their locations.

Ferret considers localization of nomadic objects and utilizes the directionality
of RFID-readers [4]. The idea is to exploit different poses of the reader to narrow
the object location down. This approach also utilizes a bistatic passive RFID-
system.

The applicability of RFID to aid robot self-localization has been investigated
in [6,5]. However, the connectivity information rather than the more informative
RSS is used for localization.

Only few work have considered exploiting the change of RSS due to user
presence for localization. Patwari et al. utilize the change of RSS to localize a
person indoors [9]. The authors use a sensor network to measure the RSS and
map its changes with a weighted linear least-squares error approach to estimated
locations. Furthermore, Zhang et al. developed a system of ceiling mounted sen-
sors that continuously measure the RSS between the sensor nodes. The absolute
change of RSS is used to localize passing users. The authors recently proposed
an extension of their original algorithm which allows for localization of multiple
targets provided these are not too close [8].

Both approaches are related to ours since the impact of user presence on
RSS is exploited. However, we point out the following significant differences:
Our approach uses a passive bistatic RFID system which is advantageous for
localization in ubiquitous environments. Such systems greatly differ in the way
RSS are measured since they rely on backscattered signals. Furthermore, the
resolution of our system depends on the number of inexpensive, passive RFID-
Tags rather than full-fledged battery-powered transceivers.

3 Impact of Human Presence on RSSI

This section reviews findings obtained from an experimental testbed and focuses
on the impact of user presence on RSS. A detailed investigation of these effects
can be found in [1]. If not stated otherwise, we denote a pure sinusoid oscillation
by signal.
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Fig. 1. a) Architecture of passive, bistatic RFID-Systems. b) Principle of radio
scattering caused by human presence.
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(a) Forward link.
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(b) Reverse link.

Fig. 2. Human influence on RFID communication and relation between RSS
variations and excess path delay.

3.1 Modeling of Human-induced RF-Shadowing

We consider a bistatic, passive RFID-System consisting of a receiving and trans-
mitting antenna and a RFID-Tag as depicted in Figures 1. These passive systems
differ from active ones as the small tags are powered by impinging radio energy
and thus do not need a battery. In the following, we seek to find a mathematical
model for the RSS at the receiving antenna given a specific user location. Due
to the characteristics of radio propagation, it is feasible to first describe the user
location as the set of coordinates having the same excess path delay. Later, we
will show how the excess path delays of several links can be combined for actual
localization.

In Figure 1b, a user is situated in the deployment area and acts as scatterer
to the ongoing wireless communications. As a result, radio signals reach the
receiving antenna over several paths of different length and, therefore, show an



excess path delay:

dexc = d′nlos + d′′nlos − dlos (1)

The figure shows that for bistatic RFID systems we need to consider both forward
and reverse links as the measured RSS depends on both. Furthermore, we are
only able to observe a function of the actual RSS which is typically referred to
as Received Signal Strength Indicator (RSSI). In the following, we assume that
the RSSI is proportional to RSS that we only need to consider the change of
RSSI to characterize the change of the true RSS.

To facilitate further considerations, we define the following quantities in dB

sinit is the initial RSSI measured without user presence in the deployment area.
sobst is the RSSI measured with user presence at a specific location in the de-

ployment area.
�s denotes the difference or variation of RSSI �s = sobst − sinit.

To characterize the change of RSSI compared with the initial RSSI, we need
to consider the relative excess path delay dexc of the direct line-of-sight (LOS)
and the scattered non-line-of-sight (NLOS) path. The ratio between excess path
delay and signal wave length determines whether two interfering signals’ am-
plitudes add or subtract. It is noted that lines of equal excess path delay form
ellipsoids with Atx and Atx as focii. For example the region dexc/� ≤ 0.25 is
called the First Fresnel Zone. Obstacles in the First Fresnel Zone typically re-
sult in attenuations of RSS [10].

Table 2. Parameters of fitting the measurements.

Parameter Forward link Reverse link

A 0.025 0.14
B −1.32 −0.79

�̃ 0.37 0.43
�refl 3.20 3.25

In a one excess path scenario, it can be shown that sobst has the following
form [1] with the parameter values in Table 2:

�s(dexc) ≈ AdBexc cos

(

2�

�̃
dexc + �refl

)

(2)

It is noted that in general there will be more than one scatterer and consequently
more than one excess path. However, since we focus in this paper on system
parameters, we constrain the investigations to the single-target case.

Figure 3 depicts simulated variation of RSSI. It is shown that there is am-
biguity when we try to determine the location of the user given a specific �s



Fig. 3. Simulated sobst for different user locations. Dark areas indicate no in-
fluence or amplification and white areas indicate attenuations. Receiving and
transmitting antenna and the tag are situated at (0,−1.75), (0, 1.75) and (0, 0)
respectively.

since lines of equal excess path delays form ellipsoids. In addition, �s can not be
attributed to either forward or backward link. To mitigate ambiguity, we need
to consider several links between tags and antennas. This has the additional
advantage of further narrowing down the possible location of the user the more
tags are used. At this point it becomes clear that the inexpensiveness and small
scale of passive RFID-Tags make such systems especially appropriate.

Following this approach, classical estimators like the method of least squared
errors or the maximum likelihood method have been applied to the problem [11].

4 Tracking Transceiver-Free Users

This section considers tracking a moving user and introduces the framework
which will be used for tracking.

Concerning the localization problem, we desire to estimate the state sequence
{�k, k ∈ IN} of the user which consists of its location and possible other param-
eters describing its movement. Here we assume a time discrete representation
where k denotes the current time slot. Due to physics, the location of an object
can not change abruptly but typically can be modeled by a set of state transition
equations

�k = fk(�k−1,vk−1) (3)

where fk is a possibly nonlinear function, v is the an i.i.d. process noise and
IN are the natural numbers. The objective of tracking is to estimate the sequence



{�k, k ∈ IN} given noisy measurements zk

zk = hk(�k−1,nk−1) (4)

Classical estimation methods regard the parameters to be estimated as deter-
ministic yet unknown variables. In contrast thereof, Bayesian estimators assume
that the parameters are random and, hence, can be described by probability
distributions [12].

In this work, we consider the application of the Extended Kalman Filter
(EKF) and the Particle Filter to the tracking problem. Since both algorithms
have been extensively studied in the literature [13,14,15], we omit the mathe-
matical details here.

5 Simulation

We conducted computer simulations to investigate the following:

– Relation between tracking error and number of RFID-Tags
– Compare tracking error of Particle Filter and Extended Kalman Filter.

We consider an indoor deployment of Nant = 4 antennas and Ntag passive RFID-
Tags. The tags are deployed in a regular, quadratic grid on the floor. The an-
tennas are located at the four corners of the deployment area in a height of 1.8
meters. A target is assumed to move through the deployment area while the
RFID system measures the vector of RSS of all tags in discrete time steps with
sampling period T .

5.1 Simulation Set-Up
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Fig. 4. Data flow of computer simulations.

A schematic of the computer simulations is shown in Figure 4. The movement
of the target is described by the process model. We assume 2D coordinates and



the associated velocities, i.e. the state � = [x, y, vx, vy]
T and the state transition

function are given by:

�k =

⎡

⎢

⎢

⎢

⎣

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

�k−1 + vk−1 (5)

Where (⋅)T denotes the transpose. To facilitate simulation, we predefined a S-
shaped trajectory and calculated the evolution of the state accordingly.

The observation model describes the relation between the vector of mea-
sured RSS z and the state. We define the matrix of antenna sequence (AS)
Sant ∈ INNas×2. The first and second element of the i-th row of Sant denote the
i-th transmitting and receiving antenna, respectively. Theoretically, there are
(

Nant

2

)

possible antenna pairs. However, we choose for the simulation Nas = 2
antenna pairs to limit the complexity of calculations. Consequently, the vector
of observations is given by

z =
[

�s(1,1), . . . , �s(Ntags,1), �s(1,2), . . . , �s(Ntags,Nas)
]T

+ n (6)

We assume a lognormal fading model and add iid Gaussian noise with distri-
bution N(0, 1) to the RSS given in dezibels. It is noted that each measured
RSS, i.e. each element of z, corresponds to the link between sending and trans-
mitting antenna and tag. Consequently, the measurement vector has a size of
zk ∈ IRNasNtag×1.

We point out that this observation model assumes knowledge of the static
RSS sinit associated with the absence of the target. Recognizing that it is possible
to measure sinit during run-time, e.g. during nights when their is no activity, we
regard this assumption as tractable.

Equation (1) and (2) are used to calculate the obstacle-dependent RSS which
is a function of the current target position. For the calculation of the excess path
length dexc we need several quantities (see eq. (1) and Figure 1b). However, since
the complexity of the human body prohibits an analytical calculation, we apply
a simplified model and regard it as a cylinder of radius 0.1 m and height 1.9
m. This way, the path length of each NLOS line segment in Figure 1b can be
determined using simple ray tracing.

To facilitate a simple implementation of the computer simulations we further
assume that all tags are in range of every antenna.

5.2 Simulation Results

In order to analyze tracking performance, we calculate the Mean Square Error
(MSE) of each estimated position (x̃, ỹ) for each point of the simulated trajectory.

MSE = E
[

(x− x̃)2 + (y − ỹ)2
]

(7)

RMSE =
√

E [(x− x̃)2 + (y − ỹ)2] (8)
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Fig. 5. MSE tracking error of a)-c) Particle Filter and d)-f) Extended Kalman
Filter. The four antennas are situated at the corners at (0,0), (0,10), (10,10) and
(10,0).

Figures 5 show the tracking error. Estimated positions are depicted by red crosses
and the black ellipses and triangles denote the 1− �-area of position errors and
the average estimated positions. It is shown that the accuracy of tracking using
the approach presented strongly depends on the number of tags. To further
elaborate on this point, the capability to correctly follow the true trajectory is
indicated by the distance between average estimated position and true position.
The figures show that, especially for the EKF, this capability strongly depends
on the number of tags deployed.

In contrast thereof, the Particle Filter shows good tracking performance for
all tag numbers investigated. This is also supported by the cumulative histograms
of Root Mean Square Error (RMSE) in Figure 6. It is shown that the tracking
error of EKF slowly approaches that of the Particle Filter. In particular, the EKF
achieves only for 36 tags feasible position estimates while the accuracy of the
Particle Filter only marginally improves when the number of tags is increased.
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(b) 25 tags.
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Fig. 6. Cumulative histogram of RMSE tracking error.

6 Conclusions

We have investigated the applicability of both Particle Filter and Extended
Kalman Filter to tracking a user by merely measuring the changing received
signal strength with passive RFID. The simulations indicate that the tracking
error strongly depends on the number of passive tags.

In contrast to the Particle Filter which showed good tracking accuracy for
all tag numbers, the Extended Kalman Filter proved to be very susceptible to
the tag number and its estimates were only feasible when using 36 tags.

Future work will consider relaxing the assumption of a-priori known static
RSS to make the approach applicable to changing environments. Although the
observation model has been calculated using real measurements, we will investi-
gate the tracking performance using our test-bed.
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