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Abstract—In ubiquitous computing, localization of users in
indoor environments is a challenging issue. On the one hand,
localization data needs to have fine granularity to provide
reasonable input for intention recognition and task planning. On
the other hand, effects like multi-path interference and signal
scattering of RF propagation in indoor environments reduces the
accuracy of traditional wireless localization techniques. However,
we prove that such adversary effects can be characterized and
utilized conversely to localize the source of RF-scatter with
passive UHF RFID.

Since measuring spatial correlation requires many spatially
separated transmitter and receiver pairs, cost-effective and un-
obtrusively attachable passive RFID-tags are especially suitable
for this purpose. The passive tags are spatially distributed in a
manner such that it is possible to infer the spatial correlation of
Received Signal Strength (RSS). The idea is to characterize the
influence of user presence on RSS, and use such relationship for
localization.

Three localization algorithms are investigated which consist
of a Maximum Likelihood Estimator (MLE), and two Linear
Least Squares variants. Algorithms are applied to measurement
data which we obtained in an indoor environment. The results
evidences our idea of human localization in such bistatic RFID
systems.

I. INTRODUCTION

Ubiquitous systems typically contain sensors, actuators and
communication modules that enable the subcomponents to
exchange information. Ubiquitous computing is one of the
technological advances that will probably influence everyday
life as devices are connected and act as a cooperative system
that is more valuable than the sum of its components.

One of the fundamental information for a ubiquitous system
is the geographic location of users and devices. Developing in-
door localization systems have attracted considerable research
effort whereby the focus is often to guarantee sufficient accu-
racy (specified by the application) using simple and pervasive
devices.

Some works consider passive RFID for this purpose because
the tags can be applied in large numbers, are relatively cost-
effective and can be attached easily. Such systems consist of
one or more reader devices and many passive tags. Since the
tags are powered by the impinging RF-energy of the reader,
they do not need a power supply and typically consist of a
thin antenna and a small integrated circuit (IC).

Besides its advantages, the complexity of indoor RF-
propagation makes localization a challenging task in passive

RFID systems. Especially in indoor environments, fixtures,
fittings and also humans can cause reflections, diffractions
and absorptions of radio signals. Therefore, some commercial
products use specialized hardware and try to increase accuracy
by fusing several different metrics, like angle and range mea-
surements. Since passive RFID-tags are powered by impinging
radio energy, they are especially sensitive to these effects.

Our approach observes a field of passive RFID tags, and
tracks back the location of user presence according to the RSS
change caused by it. Such an approach is flexible in ubiquitous
environments, since it does not require the target to wear RFID
tags.

II. RELATED WORK

Although the Global Positioning System (GPS) has been
accepted as a reliable localization system for outdoor envi-
ronments, its capabilities are very limited indoors since the
satellite signals are typically strongly attenuated by walls
and ceiling. Furthermore, in indoor environments a feasible
localization system has to distinguish locations inside rooms
and, therefore, an accuracy in the meter domain is expected.

The existing approaches to indoor localization can be
classified in several ways: By the type of measurement, for
example optical, ultrasound, infrared, pressure, RSS. Another
distinction can be made concerning the system architecture,
for example, whether the target can communicate over bidi-
rectional or unidirectional links with the localization system.
In some cases, the target does not need to carry a dedicated
device to be located which makes these approaches especially
interesting for ubiquitous environments.

Related to the distinction between uni- and bidirectional
links is the distinction between monostatic and bistatic sys-
tems. In contrast to bistatic systems which use separate anten-
nas for transmitting and receiving, monostatic systems have
collocated transmitting and receiving antennas. Being either
mono- or bistatic has strong impact on RSS-based localization
with passive RFID because the mapping of RSS to distance
is different. In bistatic systems, connectivity depends on two
physically different links as will be explained in greater detail
later.

Table I presents an overview about several related ap-
proaches which will be reviewed briefly in the following.



Table I
OVERVIEW OF RELATED WORK.

Passive Tags Measurement Transceiverless Target Link Type

User/Object Localization

Landmarc [1] No RSS No monostatic
SpotOn [2] No RSS No monostatic
Ferret [3] Yes Connectivity No bistatic

Robot Self-Localization
Schneegans [4] Yes Connectivity No bistatic
Hhnel [5] Yes Connectivity/LR No bistatic

WSN Localization using RF-Propagation Effects

Zhang et al. [6] - RSS Yes monostatic
Patwari et al. [7] - RSS Yes monostatic

curr. approach Yes RSS Yes bistatic

In contrast to our approach, Ni et al. utilize an active RFID-
system for localizing a mobile target that has RFID tags at-
tached [1]. The stationary deployed RFID-readers compare the
measured power level of reference tags to improve localization
performance.

Another well-known localization system using RFID is
SpotOn. SpotOn researchers have designed and built custom
hardware that serves as tags for localization. A 3D-localization
algorithm uses the RSS readings between tags to determine
their locations.

Ferret considers localization of nomadic objects and utilizes
the directionality of RFID-readers [3]. The idea is to exploit
different poses of the reader to narrow the object location
down. This approach also utilizes a bistatic passive RFID-
system.

The applicability of RFID to aid robot self-localization has
been investigated in [5], [4]. However, typically the connec-
tivity information is used for localization.

Only few work has considered exploiting the change of RSS
due to user presence for localization. Patwari et al. utilize
the change of RSS to localize a person indoors [7]. The
authors use a sensor network to measure the RSS and map its
changes with a weighted linear least-squares error approach
to estimated locations. Furthermore, Zhang et al. developed a
system of ceiling mounted sensors that continuously measure
the RSS between the sensor nodes. The absolute change of
RSS is used to localize passing users.

Both approaches are related to ours since the impact of
user presence on RSS is used. However, we point out the
following significant differences: Our approach uses a passive
bistatic RFID system which is advantageous for localization
in ubiquitous environments. Such systems greatly differ in
the way RSS are measured since they rely on backscattered
signals. Furthermore, we apply a more detailed model of
how user presence affect RSS and analyze extensively the
localization error and its dependence on important system
parameters.

III. REVIEWING PROPERTIES OF HUMAN-INDUCED

RF-SHADOWING

This section reports on experiences gathered from an exper-
imental testbed and focuses on the impact of user presence on
RSS. A detailed investigation of these effects can be found
in [8]. If not stated otherwise, we denote a pure sinusoid
oscillation by signal.

A. Modeling of Human-induced RF-Shadowing

In Figure 1, a user is situated in the deployment area and
acts as scatterer to the ongoing wireless communications. As
a result, radio signals reach the receiving antenna over several
paths of different length and, therefore, show an excess path
delay:

dexc = d′nlos + d′′nlos − dlos (1)

The figure shows that for bistatic RFID systems we need to
consider both forward and reverse links as the measured RSS
depends on both. Furthermore, we are only able to observe a
function of the actual RSS which is typically referred to as
Received Signal Strength Indicator (RSSI). In the following,
we assume that the RSSI is proportional to RSS that we only
need to consider the change of RSSI to characterize the change
of the true RSS.

To facilitate further considerations, we define the following
quantities in dB

sinit is the initial RSSI measured without user presence
in the deployment area.

sobst is the RSSI measured with user presence at a specific
location in the deployment area.

Δs denotes the difference or variation of RSSI Δs =
sobst − sinit.

To characterize the change of RSSI compared with the
initial RSSI, we need to consider the relative excess path
length dexc of the direct line-of-sight (LOS) and the scattered
non-line-of-sight (NLOS) path. The ratio between excess
path length and signal wave length determines whether two
interfering signals’ amplitudes add or subtract. It is noted that
lines of equal excess path length form ellipsoids with Atx and
Atx as focii. For example the region dexc/λ ≤ 0.25 is called
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(b) Forward link.
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(c) Reverse link.

Figure 1. Human influence on RFID communication and relation between RSS variations and excess path delay.

Table II
PARAMETERS OF FITTING THE MEASUREMENTS.

Parameter Forward link Reverse link

A 0.025 0.14
B −1.32 −0.79

λ̃ 0.37 0.43
Φrefl 3.20 3.25

the First Fresnel Zone. Obstacles in the First Fresnel Zone
typically result in attenuations of RSS [9].

In a two path scenario, it can be shown that the difference
Δs has the following form [8] with the parameter values in
Table II:

Δs̃(dexc) ≈ AdB
exc cos

(
2π

λ̃
dexc + φrefl

)
(2)

It is noted that in general there will be more than one scatterer
and consequently more than one excess path. In order to
characterize the impact of single scatterers, we set up the
measurement that there is only one significant excess path. We
demonstrate that such characteristics can be used to determine
the position of the scatterer.

IV. UTILIZING RF-SCATTER FOR LOCALIZATION

In this section we focus on estimating the user location
based on changes of RSSI. We propose three techniques
whereas one directly uses the measurement model of (2) and
the other two pursue non-parametric optimization.

A. Measurement Set-Up

We used the ALR-8800 RFID-reader from Alientechnology
operating on ISM 868 MHz frequency band. Two circular
polarized (G = 5.5 dB) and two linearly polarized (G = 6 dB)
antennas are connected to its ports. All positions are relative
to a coordinate system with its origin as depicted in figure 2.

To facilitate the following investigations, we introduce key
parameters of the deployment: nt and na denote the total
number of RFID tags and the number of antennas used for the
experiments, respectively. The experiment was conducted in an
indoor room. nt = 69 passive RFID tags were deployed on
the ground in a regular grid of side length 3.6 m. The n a = 4
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Figure 2. Measurement set-up.

antennas were situated near the the edges of the deployment
area at a height of 1.80 m whereby antennas of the same type
were at opposite edges. The set-up was situated in the middle
of a 8.15 m×6m room. To reduce the impact of reflection from
adjacent walls, we aimed the antennas’ main beam direction
in an angle that all wall reflections needed to bounce on at
least two walls before entering the deployment area.

The host computer was situated approximately 5 meters
from the center of the deployment area. On the host computer
ran a custom Java program which configured the RFID system
that fetched and stored the measurement data utilizing the
provided API.

To facilitate description, we introduce the following vari-
ables: The first na and the last nt elements of i =
[1, 2, . . . , na, na + 1, . . . , na + nt] represent the unique iden-
tifiers of antennas and tags.

For the measurements, we choose nap = 6 significant
antenna pairs from the possible 16 sender-receiver combina-
tions to limit execution time of experiments. Each row of
Nap ∈ N

nap×2 denotes such a pair whereby the first and
the second column indicate the transmitting antenna’s and the
receiving antenna’s identifier, respectively.

Δs ∈ R
napnt×1 denotes the vector of all RSSI variations,

[·]i denotes the i-th element of a vector. p = [x y]T and P =
[p1,p2, . . . ,pna , . . . ,pna+nt ]T denote the coordinates of each



−5 −4 −3 −2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

Δ P [dB]

D
en

si
ty

 

 

(a) Forward link.
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(b) Reverse link.

Figure 3. Sample histograms for forward and reverse link depicting the
characteristics of model errors.

element identified by i. T := {i, 0 < i ≤ nt} is the set of all
tags and L := {i, 0 < i ≤ ntnap} is the set of all measured
forward and reverse links between tags and antennas. ·̃ denote
estimated quantities.

We assume that the operators rx(i) and tx(i) return the
unique identifier of the receiving and transmitting antenna of
link i, respectively.

It is noted that we eventually seek to estimate the 2D
location of the user since the z-coordinate, i.e. the height, is
of minor importance. This stems from the fact that the source
of the scatter can be at any hight of the user. Consequently,
the algorithms work on 2D coordinates if not stated otherwise.

B. Maximum Likelihood Estimation (MLE)

The Maximum Likelihood Method of parameter estimation
has been widely applied to a large range of problems. Con-
cerning the localization problem, we seek to find the location
p̃ of the user which best fits the observed change of RSSI of
all links which builds the vector Δs.

p̃mle = argmin
p

l(p|Δs) (3)

To quantify how well a potential location agrees with the
measurements, we calculate the vector of expected RSSI
variations Δs̃ and assume that the model of (2) is subject
to Normal noise. Hence, we can calculate the negative log-
likelihood l(p|Δs):

l(p|Δs) =
∑

i

− log
1√
2πσ

exp
(
− ([Δŝ(p)]i − [Δs]i)2

2σ2

)

(4)

[Δs̃(p)]j =Δs̃([Dexc(p)]j) (5)

[Dexc(p)]j =||p − [P]rx(j)|| + ||p− [P]tx(j)||
− ||[P]tx(j) − [P]rx(j)|| (6)

It is noted that the algorithm uses a 3D coordinates for the cal-
culation of (4) and discards height information for finding the
minimum in (3). This is necessary since the assumed model is
susceptible to even small changes of distances and, therefore,
discarding height information during calculation of the excess
path delay would increase localization error. Furthermore, we
reduce the computational burden and compute ( 4) on a grid
of size 20 × 20 × 20.

Considering (4), we observe that our method’s applicability
is subject to the accuracy of the model and the validity of
the Normal noise assumption. Previous work has shown that
the model agrees well with measurements [8]. Therefore, we
elaborate on the Normal noise assumption in the following.

Figure 3 shows two typical histograms of Δs for dexc ∈
[0.21, 0.31]. It is shown that the Normal distribution can not
explain all data values. However, the strong central tendency
of measurements render the Normal distribution a feasible
assumption.

C. Weighted Linear Least Squares (WLLS)

Due to its independence from model assumptions and com-
putational feasibility, localization using a linear least squares
approach has been intensively studied in the literature. The
idea to pronounce some data values using weighting stems
from the fact, that often some measurements are known to be
more reliable than others.

Specifically, we consider the forward and backward links
and regard them as straight lines which can be described
by Ap = b. Assuming a diagonal weighting matrix W,
the Weighted Linear Least-Squares solution of the system
of equation is the point p̃wlls which minimizes the weighted
squared distance to all links.

p̃wlls = (AT WA)−1AT Wb (7)

We adopt the basic approach and incorporate knowledge about
the significance of the specific measurements from [8] for
the weighting. In particular, we apply thresholds T on Δs
and discard links with |Δs| < 2.25 on the forward link and
|Δs| < 1.45 on the reverse link to reduce the impact of noise
and maximize mutual information. Furthermore, we use the
absolute value of |Δs| of a specific link as its weighting.
Thereby, we emphasize links which are highly affected by
user presence.

D. Centroid of Nearest Intersection Points (CNIP)

It is known that the linear least-squares approaches are
susceptible to noise. Consequently, we seek to improve the
robustness of location estimates while maintaining the com-
putational feasibility. Therefore, we investigate a combination
of a centroid based localization and a WLLS approach. The
idea is to consider the intersection points (IPs) of links as
potential user locations and find the centroid of a spatially
adjacent subset of these points.

Having calculated the nip intersection points pip,i i =
1, 2, . . . , nip, we determine the

(
nip
2

)
euclidean distances dip,i

between all pairs of IPs. Since we observed that IPs con-
centrate in the vicinity of the user, we determine the lower
5% percentile of distances dip,5% and discard the rest of IPs.
C := {i,dip,i ≤ dip,5%} is the set of IPs that belong to the
5% IPs that have smallest distance to each other. We calculate
the user location as the centroid of the IPs in C:

p̃cnip =
1
|C|

∑
i∈C

pip,i (8)
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(d) CDF of WLLS Localization.
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Figure 4. Performance of algorithms.

V. EXPERIMENTAL EVALUATION

This section considers the evaluation of the localization
algorithms of Section IV using RSSI measurements form an
experimental testbed and the Matlab software for analysis.
The performance of algorithms is compared using the Mean
Squared Error (MSE) of localization emse and the related Root
Mean Square Error (RMSE) ermse

emse,i = E{(x̃i − xi)2 + (ỹi − yi)2} (9)

ermse,i =
√

emse,i (10)

E{·} denotes expectation. We consider the cumulative distri-
bution function (CDF) of the MSE of all location estimates
for all measurements which fully describes its characteristics.

Furthermore, we consider the dependence of MSE on the
number of tags used for the RSSI measurements. Therefore,
we define in addition to the set of all tags T four other sets or
group of tags, namely Tg1, Tg2, Tg3 and Tg4, that are depicted
in Figure 4a. Regarding calculation of MSE, we consider then
four different situation as either T1 = Tg1, T2 = Tg1 ∪ Tg2,
T3 = Tg1 ∪ Tg2 ∪ Tg3 or T4 = T are used for localization.

A. Results

Figure 4b depicts the MSE of localization algorithms when
all tags are used. The MLE method achieves best performance
yielding a maximum RMSE of 0.75 m at 95% confidence
while WLLS and CNIP perform similarly and achieve approx-
imately 1.61 m. The superiority of MLE is not unexpected
since the method uses the full information of Δs instead of

assuming a linear relation as associated with the WLLS and
CNIP methods. Considering WLLS and CNIP, we observe
that CNIP can improve its median and maximum MSE. This
stems from the more robust computation of location estimates
compared to WLLS which avoids very large errors and also
seems to improve middle MSEs.

However, the MLE method involves extensive calculations
compared to WLLS and CIP which make the current im-
plementation of MLE unfeasible for real time localization.
Figure 4c depicts the time complexity, i.e. the execution time,
of algorithms versus the number tags. Although MLE’s time
complexity scales linearly, its slope is much larger than that
of WLLS and CNIP.

Figure 4 (d)–(f) depict detailed analysises of MSE regarding
the number of tags used for localization. It is shown that all
algorithms benefit from increasing the number of tags, though,
the MLE method performs the best for all tag numbers. CNIP
and WLLS have similar localization errors whereas CNIP
appears to perform slightly better for all but 16 tags. When
considering only T1 consisting of 16 tags for localization,
CNIP and WLLS show equal MSE because in this case there
are often only two links significantly affected by user presence
and, therefore, only one IP. In this situation, calculating
either (7) or (8) yield identical estimates.

B. Discussion

This section is dedicated to discussing the advantageous and
drawbacks of the proposed approach.



While the MLE method achieved superior localization accu-
racy, the assumed model it uses for calculating the likelihood
was determined using the same data as for the actual local-
ization. Consequently the question arises, whether presuming
the availability of such models impairs the applicability of
the approach. However, there are many localization strategies
utilizing a often-termed offline phase in which the system
learns the the measurement model and the MLE can be
regarded as an localization technique requiring offline learning.

Another important issue is applicability of our approach
to real-time localization. Since RFID systems have to cope
with collisions of tag responses, different techniques can
be used to read a specific tag in a dense tag population.
However, applying these techniques lead to an increased
delay of responses. The current system configuration provides
measurements in sub-second intervals. However, considering
application of thresholds for WLLS and CNIP, time intervals
are longer for these methods. Further investigations concerning
fine-tuning of system parameters to improve timing are needed
to determine the applicability of the current system for real-
time localization.

Concerning our model of human influence on RSS, we
considered only one human. As pointed out earlier, this
assumption will not hold in general situations. Therefore, we
are currently investigating this issue.

Finally, it is noted that we have excluded from investigations
the identification of the user which is one advantageous
property of using RFID. Furthermore, knowing the location
of an object without knowing its identity might not suffice
for many scenarios of ubiquitous environments. However, the
current approach can be supplemented by user wearing RFID
tags. Localizing these tags and fusing these information with
our approach appears to be a good way to provide both
reasonable location estimates and identities of users.

VI. CONCLUSION

This paper presents a new approach for localization using
passive UHF RFID. The idea is to characterize the change
of Received Signal Strength Indicator (RSSI) caused by the
presence of a person inside an RFID augmented deployment
area.

We characterize the model of the influence of user location
on RSSI and apply the Maximum Likelihood Estimator (MLE)
to the localization problem. Additionally, two variants of
Linear Least-Squares localization are proposed in this paper.

Applying these techniques to the measurement data obtained
in an indoor environment reveals that the MLE achieves
superior performance while requiring extensive calculations.
The Linear Least-Squares variants have low computational
complexity, though, their location estimates are considerably
larger and might only suffice to determine the coarse location
of the user.
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