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ABSTRACT
We propose a metric to characterize the energy efficiency of
range-based localization algorithms in wireless sensor net-
works. The metric proposed differs from previous approaches
in that it is bounded and supports objective comparison of
localization algorithms using simulations. The goal of the
current work is to show that our metric achieves expected
results for well-known localization algorithms and, there-
fore, can be used to characterize and compare the energy
efficiency.

Simulation results for energy efficiency show that maxi-
mizing the local likelihood yields highest energy efficiency
whereas the linear least squares approach and the multi-
dimensional scaling method exhibit a strong susceptibility
when ranging errors are large.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.4 [Performance of Systems]: Performance at-
tributes

General Terms
Performance

Keywords
Sensor networks, energy efficiency, localization

1. INTRODUCTION
Sensor networks consist of a large number of electronic

devices, called sensor nodes, which are deployed across a ge-
ographical area. Each sensor node is capable of sensing en-
vironmental parameters, wireless communication and is able
to perform simple signal processing. Experimental deploy-
ments in the past years have shown that sensor networks
can be used in a vast number of applications. The most
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prominent civil ones are habitat monitoring, environment
observation and forecast applications [3][4].

The energy constraint nature of sensor networks makes
energy-efficiency one of the major design goals. Sensor nodes
are usually battery driven. Consequently, the research com-
munity has seen many works on energy-efficient MAC and
routing protocols and topology control. Interestingly, not
only many of the aforementioned tasks require a certain level
of spatial awareness, but also a meaningful interpretation of
the sensed data is typically only possible with the knowledge
of where the data was sensed. As a consequence, localization
of sensor nodes is a central task in sensor networks.

In general, efficiency is understood as the ratio of gain and
cost. Consequently, a high efficiency is desirable especially
when nodes are resource limited.

This work proposes LogarEEL, the Logarithmic Energy
Efficiency of Localization, as a metric to characterize the
energy-efficiency of localization algorithms. LogarEEL dif-
fers from earlier approaches in that it supports objective
comparison which is achieved through normalization to the
Cramer-Ráo-Bound of localization. Furthermore, it is con-
sistent with the general understanding that a high value de-
notes high energy-efficiency. To depict the utility of Loga-
rEEL, several well-known localization techniques are inves-
tigated in terms of energy-efficiency.

Due to space limitation, we focus on localization based on
Received Signal Strength (RSS) measurements. However,
the framework presented is also applicable to other meth-
ods of distance estimation for which a lower bound on the
localization error can be formulated analytically.

2. RELATED WORK
This section reviews several approaches to characterize the

energy-efficiency of localization in wireless sensor networks.
Feng et al. investigate localization based on distances

estimated from RSS [2]. The authors use the Utility de-
fined as the ratio of energy consumption and decrease of the
Cramer-Ráo-Bound (CRB) on localization error to charac-
terize the impact of a specific node on the overall energy
efficiency. Specifically, an anchor node is more energy ef-
ficient the smaller its Utility is. Although Utility is lower
bounded and based on the CRB it lacks objectivity since the
energy consumption is not normalized and has unit W/m2.
In addition, the proportionality criteria is not met since low
Utility denotes high efficiency.

Reichenbach et al. compare several algorithms for local-
ization in terms of energy-efficiency regarding the Power-
Error-Product (PEP) [7]. The PEP is the product of lo-



cation error and energy spent for localization. Therefore,
a small PEP denotes high energy efficiency. However, the
significance of the PEP is limited since it is not bounded,
does not use a fixed reference and is anti-proportional to the
general understanding of efficiency.

In many other works, efficiency is only used as a term
and not defined explicitly. This work’s contribution is the
definition of LogarEEL, the Logarithmic Energy Efficiency
of Localization as a metric to characterize the energy effi-
ciency of localization. The distinctive features of LogarEEL
are: It is normalized since it is based on the best achievable
accuracy of an unbiased location estimator and the energy
needed to (asymptotically) achieve this accuracy. Hence, it
is bounded and corresponds to the general understanding
that a high value denotes high efficiency.

The paper is organized as follows: Section 3 briefly in-
troduces the models and symbols used and states the as-
sumption about the wireless links. Section 3.2 reviews the
CRB on localization accuracy which will be used for the
normalization of LogarEEL. In Section 4, we introduce our
metric of energy efficiency. Simulation results of LogarEEL
for some well-known localization algorithms are presented
in section 5. In section 6, we conclude and summarize the
work.

3. MODELS AND ASSUMPTIONS
In the following, we introduce the models and symbols

used in this work and elaborate on the assumptions made.

3.1 Model of Wireless Links
Wireless communication is obviously the most suitable

way to exchange information between sensor nodes. We as-
sume a time invariant, log normal fading channel, which is
an accepted model in the research community.

This model assumes that the received signal strength Pi,j in
dBm at receiver i from node j is given by:

Pi,j = P0 − 10ǫ log10(di,j/d0) + Xs (1)

The parameter ǫ denotes the path loss exponent, which is
usually in the range of 2 to 3 depending on the environment,
P0 is the free-space RSS at a reference distance d0 and Xs ∝
N(0, σ2

rss).

3.2 CRB on Localization Accuracy
Typically, nodes in a wireless sensor network require a

certain degree of spatial awareness. The process of acquir-
ing this knowledge is often referred to as localization. A
common approach is to use so called beacon nodes, which
are aware of their absolute geographical location, therefore,
they serve other blindfolded nodes with no spatial awareness
as anchor points. This work focuses on localization based
on distances between blindfolded nodes and beacon nodes.
However, the general idea also applies to other methods,
such as angle-of-arrival or time-difference-of-arrival meth-
ods.

Naturally, one seeks to find estimates ẑ = [x̂, ŷ]T of the
true geographic location z = [x, y]T with smallest error.
Since the measurements of RSS are typically noisy, the av-
erage deviation of the estimated from the true location are
usually expressed by the Mean Square Error (MSE) e2 =

E
{

(ẑ− z) (ẑ− z)T
}

. E{·} denotes expectation.

For unbiased estimators given a description of the noise,
an analytical bound found by Cramér and Ráo, the CRB,
can be used to characterize the smallest possible MSE, hence,
the highest possible accuracy of any such estimator.

To facilitate the following investigation, we define several
variables. Let U be the set of sensor nodes that are not
aware of their geographical location, B the set of beacon
nodes, and S the set of all sensor nodes. The cardinality,
i.e. the number of nodes in a set, is denoted by | · | and
m = |B|, n = |U | and s = |S|. To identify a specific node,
we use the indices j and i where B := {i : 1 ≤ i ≤ m} and
U := {i : m < i ≤ m + n}.

The true geographical locations of the sensor nodes form
the matrix θ = [z1, z2, ..., zm+n]T θ ∈ R

(m+n)×2. Accord-

ingly, the matrix of the estimated locations is θ̂ = [z1, z2, ...,
zm+n]T. Here, we included the known beacon node loca-
tions, which, of course, do not have to be estimated. How-
ever, this formulation facilitates later investigations.

Based on the previous error model, a lower bound on the
variance of location estimates can be derived using the CRB.
Given a random variable X with univariate probability den-
sity pµ(X = x) and an unbiased estimator T (X) for the
parameter µ of p, the lower bound on the variance of esti-
mates V ar {T (x)} is given by:

V ar {T (x)} ≥ 1

F (µ)
= e2

crb,i (2)

F (µ) denotes the Fisher-Information-Matrix. Due to space
limitations and as the CRB has been intensively studied in
the literature, we restrict the discussion of CRB and refer
the interested reader to the work of Patwari et al. [5] or
Chan et al. [1].

4. ENERGY EFFICIENCY OF LOCALIZA-
TION

In this section, we introduce the model for the energy
consumption, classify the considered localization approaches
and finally define LogarEEL.

4.1 Modeling Energy Consumption
During operation, sensor nodes typically draw energy from

a battery. One major source of energy consumption are wire-
less communications [2]. We use a simple model for the en-
ergy consumption of sensor nodes which considers the energy
spent for transmitting and receiving packets, respectively.
For convenience, we leave unconsidered other sources of en-
ergy depletion, like energy consumption during idle times or
during sensing activities. This does not reduce the signifi-
cance of the investigations because the framework presented
can easily be adapted to more complex energy models. In
order to allow for an equal comparison, the results presented
later use the same basis for all algorithms investigated.

Ei =
∑

j∈S

btx
j Etx + brx

j Erx (3)

The set S contains all sensor nodes involved in the localiza-
tion process, btx

j and brx
j are the number of bits transmit-

ted and received by j, respectively and Etx (Erx) denote the
energy per transmitted (received) bit in [a.e.u./bit] where
a.e.u. denotes an arbitrary energy unit. In the following,
we regard the energy consumption during localization as its
Cost and use these terms synonymously.
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Figure 1: (a) Measurement phase: Each node deter-
mines distances to adjacent nodes by means of radio
communication (using for example RSS). (b) Aggre-
gation: Distances are transmitted to a central node.
(c) Network configuration used for simulations.

4.2 Classification of Localization Algorithms
The algorithms, which will be explained in more detail in

section 5, can be classified either centralized or decentral-
ized regarding whether or not global information is required
at one specific node. Since the centralized algorithms inher-
ently estimate the locations of all involved blindfolded nodes,
a fair comparison with decentralized approaches should con-
sider two different situations: 1) Individual localization of a
single blindfolded node, referred to as individual localization
and 2) Localization of all blindfolded nodes, referred to as
total localization. We realize that while being penalized in
terms of Cost in the first situation, centralized approaches
are expected to achieve improved efficiency for total local-
ization.

Since knowledge about all distances is required for cen-
tralized localization, the localization process can be divided
into a measurement phase, where nodes determine their dis-
tance to all neighbors, and an aggregation phase, where this
information is transmitted to a central node (see figures 1a
and 1b).

Specifically, in the measurement phase each node would
broadcast a message to its neighbors. Having received such
a broadcast, nodes would use the RSS of the transmission
to infer the distance to the sender. Consequently, leav-
ing unconsidered retransmissions, m + n transmissions and
(m +n) (m +n− 1) receptions are required to determine all
distances in the considered network. In addition, communi-
cating the distance information to a central station requires
at least m + n − 1 transmissions and receptions. Hence,
using (3) the Cost of centralized, individual localization be-
comes Cind,cent = (2(m + n) − 1)Etx + ((m + n)2 − 1)Erx. It
is noted that for centralized, total localization all n blind-
folded nodes are localized with the same Cost. Therefore,
the per node Cost is Ctot,cent = 1

n
Cind,cent.

In contrast, the decentralized approaches considered in
this work rely solely on the distances to beacon nodes and,
therefore, only require a total of m transmissions and, at
each blindfolded node, m receptions. This yields Cind,decent =
m Etx + m Erx for individual and Ctot,decent = 1

n
(m Etx +

n m Erx) for total localization.

4.3 Definition of LogarEEL
In general, efficiency is the ratio between Gain (G) and

Cost (C). Regarding localization in resource limited sensor
networks, high efficiency denotes highly accurate location

estimates for which to obtain only few resources had to be
spent. In order to quantify this formulation more mathemat-
ically, we consider the relation between the MSE of location
and the energy Ei spend to localize node i and define the
the energy efficiency η̌i of a localization algorithm:

η̌i =
1/e2

i

Ei
=

Gi

Ci
(4)

However, this expression does not allow for statements
like ”the best” efficiency, since equation (4) has no upper
bound. A reasonable way to improve the expressiveness of
equation (4) is to normalize both Gain and Cost.

Concerning the error of localization, the CRB provides a
means to assess the best possible performance of unbiased
estimation of the location and can be calculated in closed-
form [5]. Hence, the CRB is used to normalize the MSE

and, therefore, limits the range of the normalized Gain G̃ to
0 ≤ G̃ ≤ 1: G̃i = 1

e2

i
/e2

crb,i

.

Next we consider the Cost of localization, i.e. the en-
ergy consumption. In order to maintain the boundedness
property, the Cost have to be normalized. We suggest to
use the Cost associated with inferring the distances to ad-
jacent beacon nodes for this purpose as this information is
fundamental for the localization process. Consequently, the
normalized Cost at node i become C̃i = Ci

m(Erx+Etx)
.

Due to the possible range and the fact that most feasi-
ble estimators do not approach the CRB and have strongly
varying efficiency, we propose to use the log scale on the
original definition of the energy efficiency (4). Furthermore,
since accuracy and energy consumption might have different
importance to the overall system performance, we introduce
a weighting factor α to account for this. Thus, the Logarith-
mic Energy Efficiency of Localization (LogarEEL) is

ηi = 10 α log10(G̃i) − 10 (1 − α) log10(C̃i) (5)

α has range [0, 1] and can be used to either emphasize Gain
or Cost of localization. LogarEEL’s upper bound is con-
nected to the best possible accuracy given by the CRB and
the least energy consumption needed to infer the required
distance estimates. An increase of η by 1.5 dB constitutes
doubling the energy efficiency G̃/C̃ (assuming α = 0.5).

5. EVALUATION
This section briefly reviews the localization algorithms

which will be compared regarding energy efficiency using
LogarEEL and outlines their associated Costs. After stat-
ing the parameters of the simulation, results are presented
and discussed.

5.1 Maximum Likelihood Estimation (MLE)
Given the set of measured RSS {Pi,j : 1 ≤ i, j ≤ m +

n}, the locations zi of the blindfolded nodes can be jointly
estimated [5]

ẑmle,i = arg min
{zi∈R2×1}

m+n
∑

i=m+1

i−1
∑

j=1

(

log
d̂2

i,j

||zi − zj ||2

)2

(6)

where the maximum likelihood estimate d̂i,j of the distance

between i and j is given by d̂i,j = d010(
P0−Pi,j)/(10ǫ). Al-

though, this estimator is biased, its MSE closely approaches
the CRB [5]. This algorithm is centralized since (6) has to



be calculated at one node knowing all required distances and
location of beacon nodes.

5.2 Local Maximum Likelihood Estimation
(lMLE)

To reduce the complexity and to enable decentralized cal-
culation of MLE, only the local likelihood is considered,
meaning that (6) is calculated on each blindfolded node with
the locally available estimated distances to adjacent beacon
nodes. This leads to a slightly different form of (6) which
we refer to as local MLE:

ẑlmle,i = arg min
{zi∈R2×1}

m
∑

j=1

(

log
d̂2

i,j

||zi − zj ||2

)2

(7)

Since this estimator utilizes fewer information than the MLE,
it is expected that accuracy of estimates will tend to be lower
than that of MLE.

5.3 Linear Least Squares Localization (LLS)
For decentralized Linear Least Squares localization, the

received signal strength is used to estimate the distance be-
tween communicating sensor nodes. Based on the distances
d̂i,j to several beacon nodes, blindfolded node i can calcu-
late its position by solving the following system of equations:

d̂i,j − 2

√

(xi − xj)
2 + (yi − yj)

2 j ∈ B.

This system of equations can be linearized by subtracting
one of the equations from the others as shown, for example
in [6]. We use the equation corresponding to the beacon
node with the smallest estimated distance for linearization
since we found empirically that this reduces the localization
error. Without loss of generality, we consider the case that
only one blindfolded node (n = 1) shall be localized in a
fully meshed network and we employ the first beacon node,
i.e. j = 1, for linearization.

zlls,m+1 =
1

2
(AT A)(−1) AT(d̂2

m+1,1 − d̂ + d) + z2 (8)

A =











x2 − x1 y2 − y1

...
...

xm − x1 ym − y1











(9)

Here, d̂ = [d̂2
m+1,2, ..., d̂

2
m+1,m]T and d = [d2

1,2, ..., d
2
1,m]T.

Since the model assumptions indicate that distance esti-
mates are biased, location estimates using LLS will also be
biased. This estimator is based on minimizing the squared
error using a linear approach. Consequently, this estima-
tor applies a larger weight to the distance estimates with
large errors which over emphasizes. In addition, large er-
rors will render the linearization inappropriate which further
contributes to the strong susceptibility of this estimator to
errors.

5.4 Classical Metric Multidimensional Scaling
(cmMDS)

Classical Metric Multidimensional Scaling is a set of sta-
tistical techniques originally developed to display the struc-
ture of distance-like data as a geometrical picture. Since
cmMDS works on distance information between objects its
applicability for localization of wireless devices has been dis-

Table 1: Simulation parameters.

Parameter Variable Value

Deployment area - 1m × 1 m
Number of blindfolded nodes n 21
Number of beacon nodes m 4
Path loss exponent ǫ 2
Tx,Rx energy cons. Etx, Erx 1 a.e.u.
Gain-Cost weighting α 0.5
Number of trials - 5000

cussed [8]. It is noted that cmMDS belongs to the class of
centralized localization algorithms.

Starting with a square matrix D of pairwise distances be-
tween sensor nodes, cmMDS tries to find the relative ar-
rangement of these points that best fits D. Often the MSE
between the measured and the resultant distances is used to
define the goodness of a fit. Estimates of location follow-
ing the MSE objective can be obtained in the following way
where I is the identity matrix:

1. Double center D: Dc.

2. Compute Eigenvalues and -vectors: Dc = UVUT.

3. Obtain intermediate coordinates θ̌ using the two1 largest
Eigenvalues v1, v2 and the corresponding Eigenvectors
u1,u2: θ̌ = [u1,u2] I [

√
v1,

√
v2]

T.

4. Determine the similarity transform T that transforms
the estimated locations of beacon nodes to their true
locations and perform the same transform on all inter-

mediate coordinates: θ̂ = T θ̌
T

5.5 Simulation Results
For the simulations we consider a fully connected regu-

lar network of 25 nodes where the m = 4 beacon nodes are
located at the corners (see fig.1c). During simulations the
MSE of localization as given in Section 3.2 is calculated ap-
proximately on the basis of 5000 independent trials. Each
trial consists of the estimation of distances based on noisy
RSS measurements, whereas the measurement model of (1)
is assumed. Based on this error, the normalized Gain and
Cost are averaged over all blindfolded nodes and used to cal-
culate the LogarEEL using (5). Regarding Cost, individual
and total localization are considered independently. Table 1
states the simulation parameters.

Fig. 2 plots LogarEEL of MLE, lMLE, LLS and cmMDS
versus the standard deviation of RSS measurements in the
sample network of figure 1c. In general, the centralized ap-
proaches are advantageous for total localization since they
inherently estimate all blindfolded node locations. Con-
fidence intervals are omitted, as they are typically much
smaller than 1 dB. Also, results of lMLE and LLS are omit-
ted for individual localization since the graphs are just
5 (log10(Ctot,decent)−log10(Cind,decent)) ≈ 1.4 dB below those
of total localization in the considered scenario.

For localization of a single node (individual node local-
ization) it is shown that with equally weighted Gain and

1For 2D (3D) coordinates the two (three) largest Eigenvalues
should be used.
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Figure 2: Average LogarEEL η of various local-
ization algorithms versus fading standard deviation
(α = 0.5).

Cost (i.e. α = 0.5), lMLE achieves the highest energy effi-
ciency. This result stresses the point that the increase in ac-
curacy of centralized MLE compared to decentralized lMLE
does not outweigh the additional Cost for measuring and
distributing the distance estimates during individual local-
ization. For small values of σrss, LLS shows relatively high
energy efficiency with regards to lMLE. However, LLS ex-
hibits the highest degradation for growing σrss. This be-
havior is caused by the strong susceptibility of linear least
squares based optimization to large errors and, yet slightly
less pronounced, is also observed for cmMDS.

In the case of total localization, the centralized approaches
have increased LogarEEL since their Cost is independent of
the actual number of nodes to be localized and, therefore,
the average Cost per node strongly decreases compared with
individual localization. The decentralized approaches also
have slightly increased efficiency, due to decreased Cost, but
the improvement is smaller compared with that of the de-
centralized methods.

In general, LogarEEL of both MLE and lMLE are rela-
tively insusceptible to changes of σrss which indicates that
their performance is strongly connected to the CRB. This
emphasizes the objectiveness of LogarEEL since the perfor-
mance of MLE, which is able to approach the best possible
accuracy as given by the CRB, is relatively unaffected by
changes of a parameter of the wireless link, i.e. the stan-
dard deviation of RSS measurements.

6. CONCLUSION
We introduce LogarEEL, a metric to characterize the en-

ergy efficiency of localization algorithms in Wireless Sensor
Networks. Since LogarEEL is upper bounded and normal-
ized to the at most achievable accuracy, it constitutes an
improvement over existing measures of energy efficiency of
localization which are either unbounded or dependent on
nuisance parameters. We further introduced a weighting
factor which can be used to emphasize the impact of either
accuracy of location estimates or the associated energy con-
sumption.

As an example, we investigated with LogarEEL the en-

ergy efficiency of some well-known localization algorithms,
namely Maximum Likelihood, Linear Least Squares estima-
tion and a Multidimensional Scaling method. The inten-
tion of our investigations was to show that LogarEEL pro-
duces expected results for known localization algorithms and
therefore to support its utility.

The results support the general understanding that cen-
tralized approaches have difficulties to cope with decentral-
ized approaches in terms of energy efficiency. Furthermore,
the susceptibility of mean square error based localization
methods, namely Linear Least Squares and Multidimensional
Scaling, to large errors is reflected by their decreasing energy
efficiency. In contrast, MLE based approaches show little
sensitivity. Summarizing, a decentralized local Maximum
Likelihood method which optimizes only the local likelihood
only yield the highest energy efficiency for single-node lo-
calization whereas the Multidimensional Scaling approach
achieved the smallest.
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