
FPGA-based Implementation Alternatives for Keyed-Hash Message

Authentication Code in Networked Embedded Systems

Enrico Heinrich, Marian Lüder, Ralf Joost and Ralf Salomon

University of Rostock

College of Computer Science and Electrical Engineering

Institute of Applied Microelectronics and Computer Engineering

Email:{enrico.heinrich;marian.lueder;ralf.joost;ralf.salomon}@uni-rostock.de

Abstract

Field-programmable gate arrays provide a flexible and

easy-to-configure implementation platform that supports

the development of tamper-proof networked embedded

systems. In order to achieve a secure mode of operation

many of these systems employ keyed-hashed message au-

thentication code to provide security against intentional

tampering. Since this algorithm is of a high computational

complexity, this paper utilizes various hardware-software

co-design techniques for its implementation and compares

the results to standard software. These techniques vary in

the degree of required design expertise and the degree of

how (software) functionalities are implemented in hard-

ware logic.

1 Introduction

The general view on processing systems is that they

consist of two different layers, hardware and software,

which have different properties with respect to speed and

flexibility. Designing a particular hardware involves the

logic design, wiring and routing, as well as the produc-

tion of the photo masks. It thus does not come to a sur-

prise that Nvidia’s state-of-the-art Smartphone processor

APX 2500, for example, took more than 800 men-years

of development. Therefore, hardware is a rather static

layer. As a consequence, hardware designers aim to pro-

vide general-purpose designs that are as fast as possible.

Software, on the other hand, is much slower but much

more flexible, and realizes the required functionality. Any

modification can be easily done in an editor; after re-

compilation, the software provides the new functionality.

From a security perspective, however, software is prob-

lematic, since, after its deployment, it can be quite easily

altered (compromised). Backdoors, viruses, worms, and

Trojan horses are typical, well-known examples for modi-

fication attacks. In order to make sure that such attacks do

not cause any damage, it is common practice [11] to in-

stall some non-modifiable, tamper-proof security control

hardware between the network and the actual application

host.

Due to the advancements in the design of digital sys-

tems, networked embedded (real-time) systems have re-

ceived recent attention. In order to realize secure network

communication, the implementation of proper encryption,

decryption, and authentication modules is essential. Sec-

tion 2 presents a brief description of a generic embedded

system as well as the keyed-hash message authentication

code (HMAC) [12].

By their very nature, networked embedded (real-time)

systems have significantly increased demands with re-

spect to mobility, performance, resources, and being tam-

per proof. In terms of configuration flexibility and in-

tegrity enforcement, field-programmable gate arrays (FP-

GAs) seem to be an ideal implementation platform. FP-

GAs represent a piece of hardware that can be fully con-

figured according to the designer’s desires. Another ad-

vantage of FPGAs is that the core or even all functional-

ities can be realized in hardware, and thus provides code

protection to a large extent after deployment. Section 3

presents a brief overview about this technology.

This flexibility comes at the expense of runtime perfor-

mance. State-of-the-art FPGAs allow a configured (soft-

core) processor to be clocked at about 50 - 200 MHz,

which might turn into a problem if aiming to realize real-

time systems. Thus, Sections 3.2 to 3.4 discuss three op-

tions for the implementation of the message authentica-

tion functions in custom hardware and it also discusses

how to seamlessly integrate this hardware into the entire

system. Section 4 discusses how the integration of custom

hardware affects the system’s performance. It turns out

that these enhancements improve the runtime by a factor

of about 11 to three hundred. Finally, Section 5 concludes

this paper with a brief discussion.

2 Message Authentication at the Firewall-

on-Chip

The firewall-on-chip (FoC) [13] project aims at the

development of an embedded security gateway. Among



other things, this gateway provides multi-level secu-

rity [10] as well as improved real-time capabilities and

tamper-proofness. The implementation of interaction se-

curity assumes that (1) the two interacting systems ex-

change messages that are encapsulated in (IP) packages

and that (2) both sender and receiver have to pass all mes-

sages through their firewall-on-chip. For the enforcement

of the system’s security policy, a firewall-on-chip provides

various security functions, such as authentication, access

control, encryption and decryption, as well as integrity

protection, for the packets it sends and receives. Within

these security functions, the keyed-hash message authen-

tication code (HMAC) plays a key role, for further details

refer to [12].

Keyed-Hash Message Authentication Code: The

concept of the hash function is a mathematical function

that maps a string of arbitrary lengths to a fixed-length

string, also called checksum, hash value, or message di-

gest. In essence, the term “Message Authentication Code”

(MAC) refers to cryptographic hash functions, such as

MD5 [9], SHA-1 [3], SHA-256/224 or SHA-512/384 [4],

that are able to sign arbitrary messages with an electronic

signature.

Keyed-hash message authentication codes (HMACs)

are MACs that in addition to the actual message, consider

a second parameters, a secret key that is a shared secret

between the originating sender and the intended receiver.

Fig. 2 shows that an HMAC works as follows: in the

first step, the HMAC-algorithm converts the key to be ex-

actly the block size of the iterated hash by adding zero bits

to the end of the key. In the next step, it generate two de-

rived keys, the inner (Ki) and outer key (Ko), by XORing

each byte with 0x36 and 0x5C, respectively.

Secret Key 00 … 00 0x363636 ...

0x5c5c5c ...

Message to hashXOR’d key

XOR

Hash function

Hash function

intermediate hashXOR’d key

Hashed Message 

Authentication Code

XOR

Figure 1. Keyed-Hash Message Authentica-
tion Code

After calculating the message digest that now depends

on both the secret key and the actual message, the sender

transmits the message along with its digest. The receiver,

in turn, applies the same HMAC algorithm to both the re-

ceived message and the shared secret key. The receiver

considers the message correctly received, if and only if

the calculated message digest matched the received one.

In mathematical terms, the digest of a message m can

be defined as:

H (Ko,H (Ki,m)) (1)

with H denoting the hash algorithm, Ki denoting the in-

ner key, and Ko denoting the outer key.

3 Hardware-Software Co-Design Options

in FPGAs

Field-programmable gate arrays (FPGAs) are general-

purpose integrated circuits. An FPGA is programmed in a

design process for which the designer has several options.

This section briefly summarizes those ones considered in

the present case study. This description is tailored towards

the more experienced reader.

3.1 The Soft-Core Processor

The most and straight-forward design option constructs

systems that consist of a CPU, some memory cells, as well

as the required I/O ports. In the context of FPGAs, CPUs

are normally called soft-core processors and are provided

by all FPGA vendors as well as other sources. Normally,

the soft-core processors are given in high-level hardware

description languages. Thus, the system developers can

tailor their processors towards the particularities of the

software at hand. This includes, for example, the num-

ber of hardware registers, the width of the registers and

bus systems, as well as the extension by means of other

components.

Some well-known examples are the Nios and Nios II

CPUs from [2], the LEON CPUs from [5], and the Mi-

croblaze CPU from [14]. The Nios II processor, for exam-

ple, is shipped with the Altera Cyclone, Stratix, and Hard-

copy device families. This 32-bit processor consumes

about 700 – 1,800 logic elements and features up to 64

Kbytes cache, includes hardware interrupts, and hardware

multiplication units.

Existing soft-core processors either execute standard

operation codes or provide their own cross-compilers.

This is very convenient for the developer, since existing

(C) source code can be easily ported to the chosen proces-

sor. The advantages of easy (cross-) compilation and high

configuration flexibility comes at the expense of signifi-

cantly reduced execution speeds; the Cyclone II FPGA,

for example, can clock Nios II soft-core processors at

about only 85 MHz, which is about one and a half orders

of magnitude slower than a standard PC.

3.2 The C2H Compiler

Altera offers an automatic software-to-hardware con-

version tool, called C2H compiler. This compiler is ca-

pable of generating hardware modules based on given C



Nios II

Processor

System Interconnect Fabric

Nios II

Processor

System Interconnect Fabric

Ethernet

Controller

Nios II

Processor

System Interconnect Fabric

Ethernet

Controller

FPGA Platform 

(C2H-Co / VHDL-Co)

FPGA Platform (SW) FPGA Platform (VHDL-Eth)

Custom Logic 

Co-Processor

(HMAC)

Memory

Controller

Memory

Controller
Memory

Controller

Ethernet

Controller

(integrated 

HMAC)

(a) (c)

C/C++

HMAC

(b)

Figure 2. (a) FPGA platform with Nios II processor, (b) with a custom logic co-processor,(c) and
with an integrated HMAC core in the Ethernet controller

source code. The usage of this compiler is quite easy. Af-

ter choosing a C function, the C2H compiler generates a

functionally equivalent hardware module and integrates it

into the soft-core processor. This change in the system’s

hardware requires a re-synthesis of the FPGA-system; the

compiler executes all relevant updates, which includes the

configuration files as well as the software headers. Finally,

the compiler replaces the body of the scheduled C func-

tion with a system call to the newly integrated hardware.

Thus, from a software perspective no further changes are

necessary. All the other parts of the software can make

use of the “old” function as usual. The utilization of the

hardware module is entirely “hidden” within the function.

In addition, the automated hardware generation for

rather large C functions also imposes high demands on

the C2H compiler: The compiler has to adhere to both

data dependencies and timing constraints of the original

C variables. Thus, complex C functions lead to complex

hardware, i.e., hardware that requires many resources on

the FPGA.

3.3 Hand-Coded Modules

An experienced hardware designer is not bound to all

the restrictions that automatic tools, such as the C2H com-

piler, have to acknowledge. Rather, he/she can generate

arbitrary functionalities at his/her own disposal. Given

sufficient expert knowledge, the designer can apply al-

most any modification and/or extension to existing hard-

ware modules and/or systems. Since these developments

are done in a hardware description language, they require

the regular design process. The integration of the manu-

ally designed modifications also requires, of course, some

further software adaptations.

This paper considers the development of an authentica-

tion module, which is integrated into the existing system

in two different ways. The first option realizes the mod-

ule as a separate co-processor, whereas the second option

tightly integrates this module into the network interface.

From a system engineering point of view, the second op-

tion is much harder to realize, but offers higher perfor-

mance improvements, since the communication overhead

is minimal.

4 Implementation of HMAC and its Results

This section presents the architectures of four different

hardware-software co-designs. The architectures differ in

the amount of how much functionality has been realized in

hardware as well as the resulting processing performance.

The performance results have been achieved with Altera’s

low-cost Cyclone-II FPGA [1], which offers 33,216 logic

elements.

The Nios II soft-core processor: The first, most

straight forward design consists of a standard Nios II soft-

core processor, which utilizes the 16MB DDR RAM as a

conventional data and instruction memory. This design is

presented in Fig. 2a, and serves as a reference point for all

experiments presented in this paper.

In this design, the soft-core processor executes a mono-

lithic software implementation of the entire HMAC al-

gorithm [6]. The practical experiments have shown that

this system can only be clocked at about 85 MHz. Even

though this soft-core processors employs an instruction

cache of 4 kilo bytes as well as embedded multipliers,

the achievable throughput was as low as only 1,6 MBits/s.

This is way too slow for a standard 100 MBit Ethernet

connection. Furthermore, the execution of the HMAC al-

gorithm does not leave any processing line for other task,

such as encryption or other checks.

Automatically generated co-processor (C2H-Co):

The first hardware alternative was developed by applying



Altera’s C2H compiler to the computationally expensive

transform()-function of the hash algorithm. The re-

sult is a separate hash module, which communicates with

the soft-core processor by means of an existing on-chip

communication bus. This communication bus is called

Avalon. This design is presented in Fig. 2b, and denoted

as C2H-Co for short.

This co-processor module accelerates the execution of

the HMAC algorithm by a factor of about 11. However,

this module consumes about four times as much resources

as the rest of the entire system, and is a quite significant

portion of the available hardware. But as has already been

mentioned in Section 3.3, the C2H compiler can be used

by almost any designer. The achievable throughput of

17,6 MBits/s is also not sufficient for a Fast Ethernet con-

nection.

Hand-coded Co-Processor (VHDL-Co): This design

option has realized the HMAC co-processor using the

VHDL hardware description language. In so doing, the

design has been tailored to given hardware architecture

and has exploited some properties of the HMAC algo-

rithm. This design approach is similar to the one already

shown in Fig. 2b, and is denoted as VHDL-Co for short.

Due to the exploitation of several regularities as well

as possible short cuts, this design accelerates the execu-

tion of the HMAC algorithm by a factor of almost 53, and

requires only 12243 logic elements. In other words, this

co-processor is about five times faster than the automati-

cally generated co-processor and is only a half of its size.

However, in order to be successful, this option requires ad-

vanced design experiences. The achievable throughput of

84 MBits/s is almost sufficient for a Fast Ethernet connec-

tion. This design alternative is the easiest way for check-

ing the integrity of incoming packets at almost maximal

Fast Ethernet speed.

Integrated HMAC Module (VHDL-Eth)1 : Finally,

the third design option directly integrates the hand-coded

HMAC-module into the Ethernet controler. This tightly

integrated module is placed between the Nios II proces-

sor and the network controller. This aproach avoids the

data loop through the RAM and its controller. All IP

packets can be checked and rejected, if necessary, before

they reach the processor. This architecture is presented

in Fig. 2c, and is called VHDL-Eth for short. This third

design alternative yielded a four times higher performace

improvement than the VHDL-Co design did. Even at a

minimum frequency of 20 MHz, the HMAC core would

be fast enough for a Fast Ethernet connection at full speed.

Summary and Discussion:

The presented data, depicted in Fig. 4, shows that

hand-coded HMAC modules yield a speedup, which is

about five to 25 times better than the ones achieved by

1These results have been obtained by means of the Modelsim simula-

tion tool [7],[8], which provides very accurate performance figures that

are normally close to actual hardware experiments. The reason for this

approach was lack of time, which will be corrected in the final version

of this paper.

20

25

30

300

350

400

450

500

m
e
n
ts

M
B
it
s/
s)

troughput (Mbits / s) used recources

0

5

10

15

0

50

100

150

200

250

Nios II 

SW

C2H!Co VHDL!Co VHDL!Eth PC SW

1
k

 lo
g
ic

 e
le
m

tr
o
u
g
h
p
u
t 
(M

Figure 3. Throughput and resource require-
ments of the hardware implementations

compared to the soft-core implementation

using the C2H compiler. The data also shows that hand-

coded solutions require about 50 % fewer additional logic

elements. From a management point of view, these re-

sults are interesting in that the C2H compiler can be suc-

cessfully used by almost any designer, where as the fur-

ther improvements require substantial expert knowledge.

However, if aiming at the design of networked embedded

real-time systems, this additional training in a hardware

description language, such as VHDL or Verilog, might

be worth it. But in any case, both hardware-based im-

plementations significantly improve the system’s security,

since the HMAC algorithm cannot be changed after de-

ployment, at least not with reasonable efforts.

It might be mentioned that all implementations can be

further improved by applying some additional optimiza-

tions as proposed by the vendors’ guidelines. In addition,

all hardware implementations can be further improved by

using design concepts, such as parallel processing and

code pipelining. However, since this paper focuses on us-

ing hardware-software co-design techniques, these design

optimizations are beyond the scope of this paper.

5 Conclusion

This paper has discussed several options of how field-

programmable gate arrays can improve the design of

tamper-proof networked embedded systems. To this end,

this paper has focused on the implementation of a secu-

rity essential, the keyed-hash message authentication code

(HMAC) algorithm.

From a security point of view, the main advantage of

using field-programmable gate arrays is that after deploy-

ment, they cannot be altered (compromised) neither by in-

ternal nor by external attacks. From a developer’s point

of view, the usage of field-programmable gate arrays has



the additional advantages that the design is almost as easy

as developing a simple C program and that the designers

have access to some excellent support tools.

The present case study has also discussed several op-

tions with which the designer can implement certain func-

tionalities directly in hardware. The case study on the

implementation of the HMAC algorithm has shown that

the C2H compiler, which is very easy to use, yielded a

speedup of about 11 but unfortunately increased the de-

sign size by a factor of about 5. By contrast, the direct

usage of VHDL was able to accelerate the processing by

a factor of about 50 to 280, which came at a cost of a dou-

bled design size. This last design is able to process all

incoming packets in real time.

The results of the present case study suggest that the

C2H compiler provides good services if the following

conditions are met: (1) A fair performance improvement

by a factor of 10 to 20 is sufficient, which leads to a non

real-time system in this case, (2) no VHDL expert knowl-

edge is available, and (3) a rather instantaneous imple-

mentation result is required, i.e., short design-and-test cy-

cle, and (4) the FPGA provides enough resources.

The implementation of the functionality by means of

direct VHDL is useful under the following circumstances:

(1) High performance improvements are required, (2)

VHDL expert knowledge is available, (3) sufficient time

for the design-and-test cycle is available, and (4) FPGA

resources are plenty.

References

[1] Altera Corp. Nios Development Board Cyclone II Edition

Reference Manual. Altera Document MNL-N051805-1.3,

2007.

[2] Altera Corp. Nios II Processor Reference Handbook. Al-

tera Document QII5V4-7.2, 2007.

[3] D. Eastlake and P. Jones. US Secure Hash Algorithm 1

(SHA1). Internet RFC 3174, 2001.

[4] Federal Information Processing Standards. Publication

180-2: Secure Hash Standard, 2002.

[5] Gaisler Research AB. LEON2 Processor User’s Manual

-XST Edition, 2005.

[6] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-

Hashing for Message Authentication. Internet RFC 2104,

1997.

[7] Mentor Graphics Corp. ModelSim SE Reference Manual

v6.3e, 2008.

[8] Mentor Graphics Corp. ModelSim SE User’s Manual

v6.3e, 2008.

[9] R. Rivest. The MD5 Message-Digest Algorithm. Internet

RFC 1321, 1992.

[10] R. Smith. Introduction to Multilevel Security. In Hand-

book of Information Security, 2005.

[11] B. Snow. Four Ways to Improve Security. In IEEE Security

and Privacy, pages 65 – 69, 2005.

[12] United States Federal Information Processing Standards.

Publication 198: The Keyed-Hash Message Authentica-

tion (HMAC), 2002.

[13] Web Site FoC-project. http://www.imd.uni-

rostock.de/index.php?id=262, 2009.

[14] XILINX Inc. MicroBlaze Processor Reference Guide.

XILINX Document UG081 (v5.0), 2005.


