
Application Oriented Performance Evaluation of Real-Time Systems

Frank Golatowski, Dirk Timmermann
University of Rostock

Department of Electrical Engineering
Institute of Applied Microelectronics and Computer Science

Richard-Wagner-Str. 31, 18119 Rostock- Warnemünde, Germany
Phone (+49) 381 4983535 Fax (+49) 381 4983601 E-mail: {gol,dtim}@baltic.e-technik.uni-rostock.de

Abstract - This paper aims at the performance evaluation of
real-time operating systems. Our approach is based on the
Hartstone Uniprocessor Benchmark.
We have implemented this benchmark on different real-time
UNIX operating systems that are running on different
platforms. Based on this we distinguish three different
methods to compare performance.
The first one finds breakdown utilization (BU) points. At this
point a real-time system miss hard deadlines.
The second method inspects the special overload behavior
beyond the BU point. This observation shows very
interesting behavior of the system under overload conditions.
Thirdly our implementation considers performance
evaluation but also on simulation of real-time applications.
But this will not be considered here.
In this paper we will present our implementation of
Hartstone benchmark for real-time UNIX operating systems.
Our implementation realizes all parts of the Hartstone but
modifies them where necessary to suit current hardware and
software environments.
Selected results will be shown for real-time UNIX operating
systems SORIX and Lynx-OS.

I. INTRODUCTION

Fine-grained performance values are used by different
vendors to evaluate the performance of a real-time
operating system. Performance criterions are context
switching time, interrupt latency time, etc. The best-
known fine-grained real-time benchmark is the
Rhealstone Benchmark.
Alternative approaches to evaluate real-time system
performances are application oriented or application based
methods and simulation.
One attempt to evaluate the overall performance of a real-
time system is the Hartstone Uniprocessor Benchmark.
Hartstone as understood by the inventors „is a system
requirement rather than an implemented program“[1].
However only a small subset of test series has been
implemented in ADA [2].
The model focuses on applications typical for real-time
systems. The benchmark has five different test series
consisting of several experiments. Each series consists of
different processes: periodic, aperiodic and
synchronization processes. Periodics have hard deadlines
determined by their period; aperiodics may have hard or
soft deadlines. Aperiodic processes with soft deadlines run
as background processes.
Experiments start with a baseline process set characterized
by a number of processes, their priority, their synthetic
load, process period, starting time and interarrival time.
The program uses small portions of well-known
Whetstone-Benchmark as synthetic load. Each process
executes this synthetic load in a loop according to a
definition within a test description file.

Using synthetic load the execution of these process sets is
possible. A process set is feasible for the underlying
system if all deadlines of the process set are met. The
breakdown utilization point is reached if at least one
deadline is missed.
In this paper we concentrate on the comparison of
different real-time operating systems (Lynx-OS, SORIX)
running on the same machine.

II. BENCHMARK MODEL

The used workload derived from the Whetstone
benchmark is called Kilo-Whetstone Instructions (KWI),
because this synthetic load consists of thousand
instructions of the Whetstone benchmark. The load
executed by a process during an activation is measured in
Kilo-Whetstone instructions per period (KWIPP) and the
executed load during one second is measured in Kilo-
Whetstone instructions per second (KWIPS). The benefit
of this load is that granularity of the Small-Whetstone
load is much fine than the Whetstone instructions in their
whole.
Each series has different experiments. Experiments
proceed stepwise, one parameter of the process set being
changed at each step and the others kept constant.
The various series characterized by increasing complexity
result from variation of the different parameters within the
process set. An overview of the series is shown in Table 1.
In the model one deadline is said to be missed if a process
can not finish the execution within its period (periodic
processes) or up to the next activation (sporadic
processes). During execution of the experiments the load
is increased dynamicly up to the point where deadlines are
missed. In the next steps of an experiment it is possible to
observe the system under overload conditions when the
synthetic load raised up.
The first series of experiments (PH-serie) starts with a
baseline process set consisting of five independent
periodic processes with harmonic frequencies. Periodic
processes are harmonic if the relation between their
frequencies is a multiple of the smallest frequency. Figure
1 shows the five periodic and harmonic processes.
The most complex series is the SA-series starting with
five periodic processes, one synchronization process and
one aperiodic process working as a background process.
All the periodics have to synchronize during their period
once with the synchronization process (see Figure 2)

PID-No. 51 52 53 55 54
process types periodic5 periodic 4 periodic3 peridic 2 periodic1

Figure 1: A baseline process set of the PH-serie

PID-No. 50 - 54 55 56 57
process types periodics sporadic aperiodic server

Figure 2: A baseline process set of the SA-serie

Description of the PH-experiments

In the first experiment of the PH-serie (PH-1) the
frequency of the fifth process will be increased by the
amount equal to the frequency of the third process until a
deadline is missed. The experiment will be stopped after a
fixed number of missed deadlines. This experiment tests
the ability to switch between processes and reveals the
influence of kernel delays.
In experiment PH-2 all frequencies increase; the workload
of all processes is unchanged. The experiment
demonstrates the ability of the underlying system to
handle increasing workload and increasing scheduling
activities.
In experiment PH-3 the workload of each process is
increased by an additional workload (measured in
KWIPP) in such a way that the relation between process
frequencies still harmonic. The utilization should be
greater than in PH-2 because keeping the relation between
process frequencies' harmonic result in less scheduling
activity than in PH-2.
In the last experiment of the series (PH-4) the load of the
system will be increased by additional processes. In this
experiment the influence of additional tasks on scheduling
is shown.

Table 1: Series of the Hartstone Uniprocessor
Benchmark

PH-serie 1-4 5 independent periodic processes with
harmonic frequencies and hard deadlines

PN-serie 1-4 5 independent periodic processes with
non-harmonic frequencies and hard
deadlines

AH-serie 1-6 5 independent periodic processes with
harmonic frequencies
1 independent aperiodic process with soft
deadline

SH-serie 1-5 5 independent periodic processes with
harmonic frequencies
1 synchronization process, the periodic
processes have to synchronize one time in
each period

SA-serie 1-4 5 independent periodic processes with
harmonic frequencies
1 independent aperiodic process with soft
deadline
1 synchronization process of the SH-serie

III. REQUIREMENTS OF THE IMPLEMENTATION

We have found that the following requirements must be
fulfilled for implementation:

− free selection of process parameters (by using a test
description file)

− feasibility of all tests defined in the Hartstone model
− free definitions of process sets
− portability and applicability of the Benchmark for

commercial real-time UNIX systems
− portability to other real-time UNIX systems
− termination of tests after an adjustable amount of

missed or skipped deadlines
− termination of tests after a definite amount of time
− output of all intermediate steps on screen and parallel

recording in protocol files

One objective is to find a vendor independent method to
evaluate a real-time system and compare different real-
time operating systems. We decided to implement the
requirements following the Hartstone model for
commercial real-time operating systems in C
[5].

IV. EXECUTION OF THE EXPERIMENTS

At the beginning of each experiment the raw performance
executed within one process is measured.
Thereafter the test description file will be interpreted. It
starts with the specification of the baseline process set.
The following data in the file describe the following tests.
According to the specifications processes are created and
started at the same time. A experiment terminates after a
definite amount of time or definite amount of missed
deadlines.
Table 2 gives the determined baseline process set for the
selected reference hardware (Table 3). Note that on
various machines this process set may differ because the
raw performance characteristics are different. This process

set is characterised by low frequencies. It produces
approximatly 50 % of load. In the appropriate
experiments this basic load will increased to find out the
breakdown utilization point and the behavior of the system
under overload conditions.

Table 2: Definition of baseline process set for PH-series

start time

(sec.)

duration

(sec.)

priority
SORIX/
LYNX

frequency

(Hertz)

workload per
period
(KWIPP)

workload per
second
(KWIPS)

1 5 10 0/20 1.00 512 512
2 5 10 1/21 2.00 256 512
3 5 10 2/22 4.00 128 512
4 5 10 3/23 8.00 64 512
5 5 10 4/24 16.00 32 512

Σ 5 10 31.00 2560

Table 3: Reference system

Processor: i80486

CPU-frequency 33 MHz

Cache 2nd Level/ 256 Kbytes

Wait States

Memory Size

1 Wait State

16 Mbytes

V. INTERPRETING THE RESULTS

For n independent periodic tasks where priorities assigned
to tasks in rate-monotonic order (according to real-time
scheduling theory) a process set is schedulable if the
following condition holds:

n
C

T
n i

ii

n

()2 1
1

1

− ≥
=
∑ (1)

n...number of processes T...period of the i-th process
C...computation time of i-th process

For large values of n the upper bound for utilization is is
69,31 %; for n=5 processes the limit is 74,34 %. That is, if
the utilization of five processes is less than 74,34 % all
deadlines will be met.
Note this is a sufficient condition and the bound is
conservative, that means a process set with a utilization
greater than 74,34 % could be possibly scheduled on one
processor. For a detailled description of appropriate
scheduling theory see [3] [4].
In our examples the achieved utilization exceeds 74,34 %.
With higher frequencies in a process set there may be the
case where utilization is below this threshold because for
higher frequencies the system overhead increases.

System behavior

The diagrams (fig. 3 - fig. 5) show the measured
utilization and the number of missed deadlines on y-axis
and the nominal workload the real-time system has to
execute on x-axis. The measured utilization is based upon
the raw performance measured when only one process
executes the synthetic load.
We present only a selection of results; further results may
be obtained by the authors.

The represented utilization is equal to the nominal
workload up to the breakdown utilization point. Behind
that point the measured utilization is smaller than the
nominal workload because missed deadlines results in not
executed activities.
The demonstrated behavior matches our theoretical
assumptions: achieved utilization of harmonic processes is
greater than that of non-harmonics.
Processes miss their deadlines in the sequence of their
priority; first the lowest prioritised process misses all its
deadlines. The next prioritised process misses its
deadlines after that.
The BU points of the PH-1 experiments shown in Figure 3
and Figure 5 are 97 % for Lynx and 80 % for SORIX.
In the PN-experiments it is possible that both the lowest
and the next following process misses their deadlines
(Figure 4 and Figure 6)
In the case of SORIX there is a point where the highest
prioritised processes miss some deadlines although the
processes periodic 3 and periodic 4 meet their deadlines.
This behavior is dangerous in hard real-time systems. (See
Figure 5).
It can be seen in most experiments that real-time
performance of Lynx-OS is better than the performance of
SORIX. Note both operating systems are running on the
same machine.
In the SA-1 experiment the periodic processes have to
synchronize with a server process. The server process has
the highest priority and the number of its activations
corresponds to the number of activations of all periodics.
First the server misses its deadlines at utilization of 40 %.
If a periodic process misses a deadline the server misses
the deadlines too because server and periodic process are
synchronized.

VI. CONCLUSION

In this paper, we show selected results of the evaluation of
two commercial real-time UNIX operating systems using
our implementation of the Hartstone Uniprocessor
Benchmark. By the execution of the benchmark it is
possible to find the breakdown utilization point of a
system and to observe the behavior of a real-time system
under overload conditions.
Applying the described method it is possible to find
process sets representing the critical value of workload
where the given system is still able to operate correctly in
a hard real-time sense. Behind that point any increasing of
workload results in missed deadlines.
The program allows the description of real world
applications in a process set and its execution. Due to this
fact our implementation is suitable for the simulation of a
wide range of application classes. The objective is to find
out whether the real-time system will be able to meet the
given requirements.
Also we use a simulated application on different
environments to compare the performance of different
systems. Besides using these results for performance
evaluation we can predict in a very early design step the
feasibility of implementing a real-time application on the
specific platform.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

51
,5

5

61
,8

6

72
,1

7

82
,4

8

92
,7

9

10
3,

11

11
3,

43

12
3,

75
nominal workload [%]

m
is

se
d

de
ad

lin
es

0
10
20
30
40
50
60
70
80
90
100

m
ea

su
re

d
ut

ili
za

tio
n

[%
]

PH-1(Lynx)

Figure 3: utilization of PH-1 tests (Lynx-OS)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

47
,2

54
,2

8

61
,3

6

68
,4

5

75
,5

3

82
,6

1

89
,6

9

96
,7

7

nominal workload [%]

m
is

se
d

de
ad

lin
es

0

10

20

30

40

50

60

70

80

90
m

ea
su

re
d

ut
ili

za
tio

n
[%

]
periodic 1
periodic 2
periodic 3
periodic 4
periodic 5
utilization

PH-1(Sorix)

Figure 4: utilization of PH-1 tests (SORIX)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

52
,2

1

61
,9

72
,1

2

83
,1

6

92
,4

4

10
1,

72 11
1

12
0,

28

12
9,

56

13
8,

84

nominal workload [%]

m
is

se
d

de
ad

lin
es

0
10
20
30
40
50
60
70
80
90
100

m
ea

su
re

d
ut

ili
za

tio
n

[%
]

PN-2(Lynx)

Figure 5: utilization of PN-2 tests (LynxOS)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

46
,9

53
,7

60
,2

3

66
,6

8

73
,9

6

75
,1

7

83
,1

88
,2

9

93
,4

8

nominal w orkload [%]

m
is

se
d

de
ad

lin
es

0
10
20
30
40

50
60
70
80
90

m
ea

su
re

d
ut

ili
za

tio
n

[%
]

PN-2(Sorix)

Figure 6: utilization of PN-2 tests (SORIX)

0%

5%

10%

15%

20%

25%

30%

35%

40%

29
,6

32
,7

9

35
,9

8

38
,9

9

42
,0

3

44
,9

7

47
,9

1

50
,8

5

53
,7

9

nominal w orkload [%]

m
is

se
d

de
ad

lin
es

0

10

20

30

40

50

60

m
ea

su
re

d
ut

ili
za

tio
n

[%
]

periodic 3
per iodic 4
per iodic 5
sporadic
server
utilization

SA-1(Lynx)

Figure 7: utilization of SA-1 tests (Lynx)

[1] Weidermann, N.H., Kamenoff, N.I., "Hartstone
Uniprocessor Benchmark: Definitions and experiments for
real-time systems, " in Real-Time Systems Journal, vol. 4,
no. 4, pp. 353-383, Kluwer Academic Publishers, 1992
[2] Donohoe,P., Shapiro, R., Weidermann, N., "Hartstone
Benchmark user’s guide," Software Engineering Institute,
Carnegie Mellon University, Technical Report CMU-SEI-
90-TR-1, May 1990
[3] Liu, C.L. Layland, J.W, "Scheduling Algorithms for
Hard Real-Time Environments". Journal of the ACM, vol.
20, no. 1, pp. 46-61, 1973
[4] Joseph, M. (ed.), "Real-time Systems-Specification,
Verification and Analysis, " Prentice Hall, 1996
[5] Golatowski, F., Bösel, H., Paukert, A.,
"Implementierung eines applikationsorientierten
Benchmarks für Echtzeit-Unix-Betriebssysteme, " in
Echtzeit 95 Conference Proceedings, Rzehak, H., Ed.
Karlsruhe, 1995, pp. 63-70

