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Abstract. Recent advances in the theory of evolutionary algorithms
have indicated that a hybrid method known as the evolutionary-gradient-
search procedure yields superior performance in comparison to contem-
porary evolution strategies. But the theoretical analysis also indicates a
noticeable performance loss in the presence of noise (i.e., noisy fitness
evaluations). This paper aims at understanding the reasons for this ob-
servable performance loss. It also proposes some modifications, called
inverse mutations, to make the process of estimating the gradient direc-
tion more noise robust.

1 Introduction

The literature on evolutionary computation discusses the question whether or
not evolutionary algorithms are gradient methods very controversially. Some [10]
believe that by generating trial points, called offspring, evolutionary algorithms
stochastically operate along the gradient, whereas others [4] believe that evolu-
tionary algorithms might deviate from gradient methods too much because of
their high explorative nature.

The goal of an optimization algorithm is to locate the optimum (°P) (min-
imum or maximum in a particular application) of an N-dimensional objective
(fitness) function f(z1,...,zn) = f(x) with z; denoting the N independent
variables. Particular points & or y are also known as search points. In essence,
most procedures differ in how they derive future test points 2(*t1) from knowl-
edge gained in the past. Some selected examples are gradient descent, Newton’s
method, and evolutionary algorithms. For an overview , the interested reader is
referred to the pertinent literature [3,6-9, 14].

Recent advances in the theory of evolutionary algorithms [1] have also con-
sidered hybrid algorithms, such as the evolutionary-gradient-search (EGS) pro-
cedure [12]. This algorithm fuses principles from both gradient and evolutionary
algorithms in the following manner:

— it operates along an explicitly estimated gradient direction,

— it gains information about the gradient direction by randomly generating
trial points (offspring), and

— it periodically reduces the entire population to a single search point.



A description of this algorithm is presented in Section 2, which also briefly
reviews some recent theoretical analyses. Arnold [1] has shown that the EGS
procedure performs superior, i.e., sequential efficiency, in comparison to contem-
porary evolution strategies.

But Arnold’s analysis [1] also indicates that the performance of EGS progres-
sively degrades in the presence of noise (noisy fitness evaluations). Due to the
high importance of noise robustness in real-world applications, Section 3 briefly
reviews the relevant literature and results.

Section 4 is analyzing the reason for the observable performance loss. A first
result of this analysis is that the procedure might be extended by a second,
independently working step size in order to de-couple the gradient estimation
from performing the actual progress step.

A main reason for EGS suffering from a performance loss in the presence of
noise is that large mutation steps cannot be used, because they lead to quite
imprecise gradient estimates. Section 5 proposes the usage of inverse mutations,
which use each mutation vector z twice, originally and in the inverse direction
—z. Section 5 shows that inverse mutations are able to compensate for noise
due to a mechanism, which is called genetic repair in other algorithms. Section
6 concludes with a brief discussion and an outlook for future work.

2 Background: Algorithms and Convergence

This section summarizes some background material as far as necessary for the
understanding of this paper. This includes a brief description of the procedure
under consideration as well as some performance properties on quadratic func-
tions.

2.1 Algorithms

As mentioned in the introduction, the evolutionary-gradient-search (EGS) pro-
cedure [12] is a hybrid method that fuses some principles of both gradient and
evolutionary algorithms. It periodically collapses the entire population to a sin-
gle search point, and explicitly estimates the gradient direction in which it tries
to advance to the optimum. The procedure estimates the gradient direction by
randomly generating trial points (offspring) and processing all trial points in
calculating a weighted average. In its simplest form, EGS works as follows!:

1. Generate i=1, ..., \ offspring y%i) (trial points)

v\ =z + 02l) (1)

! Even though further extensions, such as using a momentum term or generating
non-isotropic mutations, significantly accelerate EGS [13], they are not considered
in this paper, because they are not appropriately covered by currently available
theories. Furthermore, these extensions are not rotationally invariant, which limits
their utility.



from the current point x; (at time step t), with 0>0 denoting a step size
and z() denoting a mutation vector consisting of N independent, normally
distributed components.

2. Estimate the gradient direction g;:

Gi= (1@ = 1@0) (v - =) - (2)

i=1

3. Perform a step

Tip1 = X + \/N”z%” =x¢ + zgprog) ) (3)
t

with z(Pr8) denoting the progress vector.

It can be seen that Eq. (2) estimates an approximated gradient direction
by calculating a weighted sum of all offspring regardless of their fitness values;
the procedure simply assumes that for offspring with negative progress, positive
progress can be achieved in the opposite direction and sets those weights to
negative values. This usage of all offspring is in way contrast to most other
evolutionary algorithms, which only use ranking information of some selected
individuals of some sort. Further details can be found in the literature [1,5,12].

EGS also features some dynamic adaptation of the step size o. This, however,
is beyond the scope of this paper, and the interested reader is referred to the
literature [12].

This paper compares EGS with the (u/p, A)-evolution strategy [5,10], since
the latter yields very good performance and is mathematically well analyzed.
The (u/p, A)-evolution strategy maintains y parents, applies global-intermediate
recombination on all parents, and applies normally distributed random numbers
to generates A offspring, from which the p best ones are selected as parents
for the next generation. In addition, this strategy also features some step size
adaptation mechanism [1].

2.2 Progress on Quadratic Functions

Most theoretical performance analyses have yet been done on the quadratic
function f(z1,...,2,) = Y., #7, also known as the sphere model. This choice has
the following two main reasons: First, other functions are currently too difficult
to analyze, and second, the sphere model approximates the optimum’s vicinity
of many (real-world) applications reasonably well. Thus, the remainder of this
paper also adopts this choice.

As a first performance measure, the rate of progress is defined as

o= f(x) — f(Ti41) (4)

in terms of the best population members’ objective function values in two sub-
sequent time steps ¢ and ¢t+1. For standard (u, A)-evolution strategies operating
on the sphere model, Beyer [5] has derived the following rate of progress ¢:

¢ ~ 2Rcy, y0 — No? | (5)
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Fig. 1. Rate of progress for EGS and (p/p, A)-evolution strategies according to Egs.
(7) and (8). Further details can be found in [1].

with R = [|z4|| denoting the distance of the best population member to the
optimum and ¢y, denoting a constant that subsumes all influences of the pop-
ulation configuration as well as the chosen selection scheme. Typical values are:
01,6:1-275 01,10:1.54, 01’100:2.51, and 01’1000:3.24. To be independent from the
current distance to the optimum, normalized quantities are normally considered
(i-e., relative performance):

©* = o*cy\ — 0.5(c*)? with
¢* = om0t =0 . (6)

Similarily, the literature [1, 5, 10] provides the following rate of progress formulas
for EGS and the (u/p, A)-evolution strategies:

A o*
* ~ * - _ 7
YPEGS ¥ 0 1+J*2/4 5 (7)
* * a*
Pufur B O Cufux — 2% (8)

The rate of progress formula is useful to gain insights about the influences of
various parameters on the performance. However, it does not consider the (com-
putational) costs required for the evaluation of all A offspring. For the common
assumption that all offspring be evaluated sequentially, the literature often uses
a second performance measure, called the efficiency n = ¢*/A. In other words,
the efficiency 7 expresses the sequential run time of an algorithm.

Figure 1 shows the efficiency of both algorithms according to Egs. (7) and
(8). It can be seen that for small numbers of offspring (i.e., A~5), EGS is most



efficient (in terms of sequential run time) and superior to the (u/u, A)-evolution
strategy.

3 Problem Description: Noise and Performance

Subsection 2.2 has reviewed the obtainable progress rates for the undisturbed
case. The situation changes, however, when considering noise, i.e., noisy fitness
evaluations. Noise is present in many (if not all) real-world applications. For the
viability of practially relevant optimization procedures, noise robustness is thus
of high importance.

Most commonly, noise is modeled by additive N(0,0.) normally distributed
random numbers with standard deviation o.. For noisy fitness evaluations, Arnold
[1] has derived the following rate of progress

A o’
bas = o* - , 9
YEGS ® 0 \/1-1—0*2/4-}-0;*2/0*2 2 ©)

with ¢ = 0. N/(2R?) denoting the normalized noise strength.

Figure 2 demonstrates how the presence of noise o} reduces the rate of
progress of the EGS procedure. Eq. (9) reveals that positive progress can be
achieved only if o7 < v/4X 41 holds. In other words, the required number of
offspring (trial points) to estimate the gradient direction grows quadratically.

Another point to note is that the condition o} < 1/4X + 1 incorporates the
normalized noise strength. Thus, if the procedure approaches the optimum, the
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Fig. 2. The rate of progress ¢* of EGS progressively degrades under the presence of
noise o . The example has used A=25 offspring. Further details can be found in [1].
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distance R decreases and the noise strength increases. Consequently, the proce-
dure exhibits an increasing performance loss as it advances towards the optimum.

By contrast, the (u/u, A)-evolution strategy benefits from an effect called
genetic repair induced by the global-intermediate recombination, and is thus
able to operate with larger mutation step sizes o*. For the (u/u, A)-evolution
strategy, the literature [2] suggest that only a linear growth in the number of
offspring A is required.

4 Analysis: Imprecise Gradient Approximation

This section analysis the reasons for the performance loss described in Section
3. To this end, Figure 3 illustrates how the EGS procedure estimates the gradi-
ent direction according to Eq. (2): g; = E;\:l(f(ygz)) — f(@) (') — z). The
following two points might be mentioned here:

1. The EGS procedure uses the same step size ¢ for generating trial points and
performing a step from x; to x441.

2. For small step sizes o, the probability for an offspring to be better or worse
than its parents is half chance. For larger step sizes, though, the chances for
better offspring are steadily decreasing, and are approaching zero for o > 2R.
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Fig. 4. Normalized rate of progress ¢* when using different step sizes o4 and o, for
the example N = A = 10.

It is obvious that for small A\, unequal chances have a negative effect on the
gradient approximation accuracy.

Both points can be further elaborated as follows: A modified version of the EGS
procedure uses two independent step sizes o, and o, for generating test points
(offspring) yftz):mt+agz§’) and performing the actual progress step xii1=x;
+0,V/Ngi/||g:|| according to Egs. (1) and (3), respectively. Figure 4 illustrates
the effect of these two step sizes for the example R = 1, N = 10 dimensions
and A = 10 trial points. It can be clearly seen that the rate of progress ¢*
drastically degrades for large step sizes o,. Since Figure 4 plots the performance
for ‘all possible’ step sizes o5, it can be directly concluded that the accuracy of
the gradient estimation significantly degrades for step size o, being too large;
if the estimation § = g was precise, the attainable rate of progress would be
¢* = (f(zo) — f(0))N/(2R?) = (1 - 0)10/2 = 5.

This hypothesis is supported by Fig. 5, which shows the angle cosa =
99/(|lglll|gl]) between the true gradient g and its estimate g. It can be clearly
seen that despite being dependent on the number of trial points A, the gra-
dient estimate’s accuracy significantly depends on the step size o,. The qual-
itative behavior is more or less equivalent for all three number of trial points
A € {5,10,25}: it is quite good for small step sizes, starts degrading at o, ~ R,
and quickly approaches zero for o, > 2R. In addition, Fig. 6 shows how the sit-
uation changes when noise is present. It can be seen that below the noise level,
the accuracy of the gradient estimate degrades.

In summary, this section has show that it is generally advantageous to employ
two step sizes o4 and o, and that the performance of the EGS procedure degrades
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Fig. 5. cos a between the true gradient g and its estimate g as a function of the number
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Fig. 6. cos a between the true gradient g and its estimate g as a function of the noise
strength o. € {0.002,0.01,0.05,0.5}. In this example, N = A = 10 and R = 1 were
used.

when the step size o, is either below the noise strength or above the distance to
the optimum.
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Fig. 7. cosa between the true gradient g and its estimate § for various numbers of
trial points A. For comparison purposes, also the regular case with A = 10 is shown. In
this example, N = 10 and R = 1 were used.

5 Inverse Mutations

The previous section has identified two regimes, o, < 0. and o, > R that yield
poor gradient estimates. This problem could be tackled by either resampling al-
ready generated trial points or by increasing the number of different trial points.
Both options, however, have high computational costs, since the performance
gain would grow at most with v/ (i.e., reduced standard deviation or Eq. (9)).
Since the performance gain of the (u/u, A)-evolution strategy grows linearly in
A (due to genetic repair [1]), these options are not further considered here.

For the second problematic regime oy, > R, this paper proposes inverse
mutations. Here, the procedure still generates A trial points (offspring). However,
half of them are mirrored with respect to the parent, i.e., they are pointing
towards the opposite direction. Inverse mutations can be formally defined as:

ygi) =z + agz,gi) fori=1...[)\/2] (10)
i) =@ — oz VW fori = [A/2] +1,...A

In other words, each mutation vector z(?) is used twice, once in its original form
and once as —z(%).

Figure 7 illustrates the effect of introducing inverse mutations. The perfor-
mance gain is obvious: The observable accuracy of the gradient estimate is con-
stant over the entire range of o, values. This is in sharp contrast to the regular
case, which exhibits the performance loss discussed above. The figure, however,
indicates a slight disadvantage in that the number of trial points should be twice
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Fig. 8. cosa between the true gradient g and its estimate g for A € {10,20} and
o € {0.05,0.5}. For comparison purposes, also the regular case with A = 10 and
oe € {0.05,0.5} (dashed lines). In this example, N = 10 and R = 1 were used.

as much in order to gain the same performance as in the regular case. In addition,
the figure also shows the accuracy for A = 6, which is smaller than the number
of search space dimensions; the accuracy is with cosa = 0.47 still reasonably
good.

Figure 8 illustrates the performance inverse mutations yield in the presence of
noise. For comparison purposes, the figure also shows the regular case for A = 10
and o, € {0.05,0.5} (dashed lines). Again, the performance gain is obvious: the
accuracy degrades for o, < 0. but sustains for o, > R, which is in way contrast
to the regular case.

Figure 9 shows the rate of progress ¢* of the EGS procedure with two step
sizes 0, and o, and inverse mutations for the example N = 40 and A=24 and
a normalized noise strength of ¢} = 8. When comparing the figure with Fig. 2,
it can be seen that the rate of progress is almost that of the undisturbed case,
i.e.,, of = 0. It can be furthermore seen that the performance starts degrading
only for too small a step size o4. It should be mentioned here that for the case
of o7 = 0, the graphs are virtually identical with the cases ¢} = 8 and 0, = 32,
and are thus not shown.

Figure 10 demonstrates that the proposed method is not restricted to the
sphere model; also the general quadratic case f(z) = Y.,&'z} benefits from
using inverse mutations. The performance gain is quite obvious when compar-
ing graph “C”, i.e., regular mutations, with graphs “A” and “B”, i.e., inverse
mutations. When using regular mutations, the angle between the true and es-
tiamted gradient is rather eratic, whereas inverse mutations yield virtually the
same accuracy as compared to the sphere model. It might be worhtwhile to note
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that regular mutations are able to yield some reasonable accurace only for small
excentricities, e.g., £ = 2 in graph “D”.

Even though inverse mutations are able to accurately estimate the gradient
direction, that do not resort to second order derivatives — that in the case of
excentric quadratic fitness functions, the gradient does not point towards the
minimum. Please note that as all gradient-based optimization procedures that
do not utilize second order derivatives suffer from the same problem.

6 Conclusions

This paper has briefly reviewed the contemporary (u/p, A)-evolution strategy as
well as a hybrid one known as the evolutionary-gradient-search procedure. The
review of recent analyses has emphasized that EGS yields superior efficiency
(sequential run time), but that it significantly degrades in the presence of noise.
The paper has also analyzed the reasons of this observable performance loss. It
has then proposed two modifications: inverse mutations and using two indepen-
dent step sizes o4 and op, which are used to generate the X trial points and to
perform the actual progress step, respectively. With these two modifications, the
EGS procedure yields a performance, i.e., the normalized rate of progress ¢*,
which is very noise robust; the performance is almost not effected as long as the
step size o4 for generating trial points is sufficiently large.

The achievements reported in this paper have been motivated by both anal-
yses and experimental evidence, and have be validated by further experiments.
Future work will be devoted to conducting a mathematical analysis.
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