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A CMOS Floating-Point Vector-Arithmetic Unit
D. Timmermann, B. Rix, H. Hahn and B. J. Hosticka

Abstract—This work describes a floating-point arithmetic unit
based on the CORDIC algorithm. The unit computes a full set
of high level arithmetic and elementary functions: multiplication,
division, (co)sine, hyperbolic (co)sine, square root, natural loga-
rithm, inverse (hyperbolic) tangent, vector norm, and phase. The
chip has been integrated in 1.6 ym double-metal n-well CMOS
technology and achieves a normalized peak performance of 220
MFLOPS.

I. INTRODUCTION

In this paper we present a floating-point arithmetic unit
that is based on the COordinate Rotation DIgital Computer
(CORDIC) algorithm [1], [2] and that exhibits an exceptional
functionality. While the CORDIC algorithm enjoys an in-
creasing popularity when realizing trigonometric or hyperbolic
functions, its implementations exist either only as firmware
[3] or do not realize the entire algorithm [4], [5], [20]. This
approach is often adopted when the full set of arithmetic and
elementary functions offered by CORDIC is not acquired,
e.g., for dedicated special-purpose applications [6]-[8]. This
contribution presents a CORDIC chip which implements all
CORDIC functions available but in contrast with a previously
reported work, it realizes an IEEE-754 floating point pipeline
instead of a fixed-point recursive approach [9], thus achieving
significantly higher functional throughput.

II. CORDIC ALGORITHM

Iterative vector rotations form the mathematical basis for
the computation of the CORDIC algorithm [1], [2]. Since
the resulting iteration sequences are highly regular and their
execution can be easily pipelined, they are amenable to mono-
lithic integration. In addition, the CORDIC algorithm achieves
unprecedented functionality because the coordinate systems
for the iterations can be readily changed.

The arithmetic unit presented in this work realizes CORDIC
iterations given by:

Tip1 = @3 — mo2” Sy,
Yir1 = yi + 0,275,

@

Zi4+1 = %3 — Oi0m i,
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TABLE I
CORDIC-FuncTIoNs (k—1,0,1 = scaling factors)

zn— O (Rotation) _Yn (Vectoring)

zn = k_1(zocosh(zp) —— /22 —y?
n = = [} 0

m= -1 +yosinh(z0)) pa
yperbolic v —+ky_015i(:£(c::;l)(zo) +tanh™! (yo/z0)
m=20 Tn = Tp In = o
linear Yn = T020 + Yo Zn = 20 + yo/Zo
m=1 zn = ki(xocos(z0) — yosin(z0)) z, = kl\/m
circular ¥n = k1(yocos(z0) + zosin(z0)) , = 2z0+tan~(yo /o)
where,

m coordinate system,

g; rotation direction,

S(m,i)  shift sequence

O i incremental rotation angle,

i ith iteration.
The parameter m can be chosen as 1, 0, or —1 and the corre-
sponding vector movements can be interpreted as rotations on
a circle, a straight line, or a hyperbolic, respectively.

The convergence properties of the algorithm depend on the
predetermined sequence of S(m, ¢), which defines the angle:

1 - —S(m,i
Ami = ﬁtan 1(ma= 5ty
tan~1(2-50™D)  form =1
= { 2-5(md) for m =0 @

tanh~1(2-5(m9))  for m = —1.

During the iterations, either 2z or y are forced to zero by
choosing

o; = sign(z;) or o; = —sign(z;)sign(y;), 3
respectively. By specifying the iteration goal and appropriate
coordinate system, we can program the unit to obtain the
desired functions (see Table I). zg, yo, and zp are the initial
values and k,, represents the scaling factor. As generally
km # 1, this spurious factor must be compensated for.

There are several possible solutions to this problem. One
common method is to increase the iteration count by repeating
some of the iterations in such a manner so that the deviation
from k,, = 1 can be adjusted by a binary shift [10]. Another
approach relies on using double shifts, i.e., an additional shift
is used in the CORDIC iteration besides the original one (see
CORDIC equations above). The increase in iteration count
is then much lower when compared with the first method
[5]. We adopted a hybrid solution that relies on repeating as
few iterations as possible and decomposing 1/k, in factors
1 + 279 [19].
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Fig. 1. Block diagram of the CORDIC pipeline.

III. FUNCTIONAL OVERVIEW

The block diagram of the CORDIC-based arithmetic unit
implemented in this work is shown in Fig. 1. The input data
stream is fed into three input ports z,y, and z, and after a
fixed pipeline latency of 44 cycles the results appear at the
output ports r and yz (note: M denotes mantissa and E
exponent in Fig. 1). It directly computes the following elemen-
tary functions: multiplication, division, (co)sine, hyperbolic
(co)sine, square root, natural logarithm, inverse (hyperbolic)
tangent, vector norm, and phase. As an example, a full
coordinate transformation is performed using one instruction
only (e.g., instruction ROT, cf. Table IT). Further functions can
be obtained when presetting some input values according to
Table IIL

The unit employs an FXP pipeline that implements
hardwired add-and-shift sequences and yields a much higher
throughput than recursive implementations [9]. The FXP
pipeline carries out the CORDIC iterations and subsequent
scaling operation to compensate for the scaling factor k.
Each iteration pipeline stage executes one iteration according
to (1). The FXP-pipeline (29 stages) is preceded by a
front-stage (see Fig. 2) which accepts the input data in
IEEE-754 single-precision FLP format and carries out the
conversion into an internal FXP format (Fig. 3). This format
was developed to suit the modified floating-point CORDIC
algorithm which is employed in the pipeline {11]. Thus any
further mantissa alignments and exponent computations inside
the inner pipeline can be omitted. The conversion is based
on the same method as found in FLP adders: 1) determining
a common exponent for both arguments, called a reference
exponent, 2) mantissa shifting depending on the difference
between the arguments’ exponent and the reference exponent,
3) processing of the shifted mantissas, 4) normalization of the
mantissas and exponent alignment. However, in our case it is
more complicated due to the three arguments of the CORDIC
algorithm.,
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TABLE I
PARTIAL LIST OF AVAILABLE FUNCTIONS

Mnemonic Hex Description
DIVADD 04 T = Tin, Y2 = Zin + Yin/Tin
DIVSUB 06 T = Zin, Y2 = Zijp — yin/xin
MULADD oC Z = ZTin, Y2 = Yin + Zin * Tin
MULSUB OE T = Zin, YZ = Yin — Zin * Tin
HVECT 05 = ((2in)? — (%1n)2)05,

Yz = zip + tanh (3, /2i,)
HVECTM 08 T = ((Iin)2 - (%n)Q)O.S’

Yz = 2in — tanh ™ (g /2in)
HROT 0D Z = Ty * cosh(2in) + Yin * sinh(zy),

Y2z = Yin * cosh(zin) + iy * sinh(zi,)
HROTM OF Z = Zin * cosh(2in) — Yin * sinh(zip ),

Y2z = Yin * cosh(zin) — @iy * sinh(z;,)
VECT 15 2= (@) + ()7,

Y2 = zip + tan™ ! (yin/Tin)
VECTM 18 z = ((2in)? + (41)%)05,

Yz = zip — tan" ! (gin/Tin
ROT 1D & = Tin * €08(Zin) — Yin * sin(ziy ),

YZ = Yin % C08(2in ) + Zin * sin(zi,)
ROTM 1F T = Tig * €08(Zin) + Yin * sin(zip ),

Y2 = Yin * €08(2in) — Tin * sin(zin)
IHROT 09 T = Zin * cosh(2in) + ¥in * sinh(zip ),

Y% = Yin * cosh(zin) + &in * sinh(zj, )|!
IHROTM 0B T = Tin * cosh(zin) — yin * sinh(z,),

Y2z = Yin * cosh(zin) — i * sinh(zy )|
IROT 19 T = Tip * C08(Zin) — Yin * sin(zin ),

YZ = Yin * COS(Zin) + Zin * Sin(zin)l1
IROTM 1B T = Tin * c0s(2in) + Yin * sin(zi,),

Yz = Yin * €05(2Zin ) — Tin * sin(zin )|’

! rotation angle is obtained from preceding operation

TABLE III

ADDITIONAL FUNCTIONS AVAILABLE BY PRESETTING SPECIFIC INPUT VALUES
Instruction Input Output

x Yy z T yz
ROT z 0 z zcos(z) z sin(z)
HROT E 0 z zcosh(z) z sinh(z)
HVECT z+1 z-1 0 24T iin(z)
HROT z x z ze* re*
HVECT z 1 0 VzZ =1 coth—1(x)
HVECT :L‘+4l x—% 0 NG ln(i/.’t)
HVECTM 1 y 72 Vi1 cot™l(y)
HVECT z+y y—=z 0 2%y %ln(y/z)

Two’s complement of all three mantissas is computed
(TCOMPL) and a bias of 127 is subtracted (BIAS) to yield
a reference exponent. This is generated according to Table
IV and passed through the FXP pipeline at the right hand
side. Several interim results determine the amount of mantissa
shifting. The FXP pipeline also incorporates at its end eight
scaling stages that adjust the spurious factor k,, using suc-
cessive multiplications by factors of (1 & 2~7), as mentioned
above. The end-stage (Fig. 4) follows the FXP pipeline and
performs mantissa normalization and rounding and also expo-
nent computation so that the output data conform to the IEEE
floating-point format. For this reason, the internal data have
to be converted into sign/magnitude format (TCOMPL). The
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Fig. 3. Internal data format.

block labeled LZDC inspects the leading zeros of the mantissas
and controls the barrel-shifter used for normalization. Using
these results and the reference exponent calculated in the front-
stage, the three output exponents are computed. Sticky bit
rounding is employed for the mantissa rounding which causes
no ripple and limits the rounding error to max. 1 LSB,

Six bit instruction controls the data flow, the iteration goal
(rotation or vectoring), and the coordinate system selection.
Besides its floating-point capability, the chip also accepts input
data in a 24-bit fixed-point format. In addition, it offers a
constant angle coding option for those algorithms that require
subsequent vector rotations by the identical vector phase.
T?lis feature speeds up the computation in such cases since
it dispenses with repeated calculations of z.

IV. DESIGN

The implementation of the CORDIC equations (see (1))
requires three data paths. Due to the characteristics of the
functions computed and the add/shift property of the algorithm
we have to provide additional overflow (integer) and guard
bits in the internal data representation. As we are employing
the IEEE-754 single precision format two internal 32b data
paths ¢! sign, 3 overflow, 23 fractiori, and 5 guard-bits) are
used for z and y computation, and a 29b data path (1 sign, 2
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Barrel-Shifter

Fig. 4. End-stage.
TABLE IV
DETERMINATION OF THE REFERENCE EXPONENT
Vectoring Rotation
Circular  ER = max (EY0,EXo) ER = max (EYp,EXo)
Linear ER = max (EZo,EYq-EXo) ER = max (EYo,EXo + EZg)

Hyperbolic ER = max (EY(,EXp) ER = max (EYo,EXp

overflow, 23 fraction, and 3 guard-bits) is required for realizing
of the z calculation. The fraction pipeline consists in total of 29
iteration and 8 scaling factor compensation stages, each also
containing additional registers for the 10b reference exponent.
Hence, the internal data path measures 103b x 37b in total
which dictates mandatory use of chip area saving methods.

In order to execute the CORDIC equations, a repeated
addition/subtraction of the z-mantissa and the y-mantissa
shifted by S(m,) and vice versa is required (see (1) and
Fig. 1). Direct mapping of these operations into silicon would
require interconnect criss-crossing of both data paths in each
iteration stage. These crossings would require a minimum
routing length of 32b (for S(m,4) = 1) and would yield in
general a highly irregular layout. To eliminate such crossings,
the z and y paths are bitwise interleaved in layout thus
reducing the minimum routing length required for shifting to
2b (1b for z and 1b for y).

Spacing and routing of the pipeline depend on the actual
CORDIC sequence S(m,%) as given by Table V. This has
been found using computer simulations which optimized the
number of iterations and the resulting error distribution [19]. It
is used in an area optimizing CORDIC FXP pipeline module
generator. Fig. 5 depicts the layout and routing scheme used in
the generator, together with the bitwise interleaved paths and
shift routing (MCA stands for Manchester carry chain adder).
Each bit cell contains two identical outputs on the left and
the right edge of the cell. Together with a) an asymmetric
arrangement of the shifted inputs (see dashed incision of Fig.
5) and b) routing the (longer) shifted « input in second metal
layer (metal2) and the shifted y input in 1st metal layer
(metall) these measures save one routing track. Therefore,
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TABLE V
SHIFT AND SCALING PARAMETERS (19]
i S(m,i)i  S(m,i)i  S(m,i)i  S(m,i)i  S(m,i))i S(m,1)
1 1 6 3 11 7 16 12 21 16 26 21
2 2 7 4 12 8 17 13 22 17 27 22
3 2 8 5 13 9 18 13 23 18 28 23
4 2 9 6 14 10 19 14 24 19 29 24
5 2 10 6 15 11 20 15 25 20 — —
m__ a(m,1)a(m,2)a(m,3)a(m,4) a(m,5)a(m,6)a(m,7)a(m,8)
1 -2 4 -5 6 0 17 -20 0
0 0 0 0 0 0 0 0 0
-1 2 4 0 6 -6 0 -20 -21
i i i i
LYis (Xha | | pet e g Y X
& 1YY A [‘i ﬂ lll lll '
3 : " ey H"
> : ->
-> n Iif ->
y |1ls ¥s s s I s 8! 1s _Ts lI|
l MCA | MCA ! MCA ‘ MCA | MCA‘\‘MGA IY!XI'QIY.I,QXE‘
T T TT I [ 1 [
i+1 i+ j+1 j+
Yia  Xia i N
s = shifted input contact cuts not shown o Metal2
i« significance shift = 3 | = pipeline stage —=— poly —— Metall
Fig. 5. Bitwise interleaved z/y paths and shift routing.

we need at most 16 routing tracks for the worst case and
the entire shift wiring occupies only 18% of the whole FXP
pipeline area.

The generator places and routes the whole internal FXP
pipeline in 25 CPU seconds (VAX 11-8550) and is fully flex-
ible in terms of design rules and parameters of the algorithm.
It computes the properly rounded binary representation of the
rotation angles a,,, ; and programs one input of the 2 data path
adder by connecting the inputs of a 3-to-1 multiplexer to Vg4
or V. The pipeline, consisting mainly of adders and registers,
occupies the main part of the chip area. Investigations have
shown that a ripple carry adder, consisting of Manchester carry
chain adders, results in the best area/speed trade-off for our
purposes. To get a fast carry path we implemented 4bit-slices
(Fig. 6) with carry buffers after 2bit. The sign-extension of
the shifted MSB’s severely increases its capacitive loading so
we have provided an optimized MSB-buffer which is hidden
berieath the power supply wiring. The generator has been
developed in such a way that fast redundant addition schemes,
such as redundant binary [6] or carry save, can also be
implemented if desired. According to our estimates, employing
these adders would more then double our current chip area.
The remaining parts of the chip were laid out manually.

The chip also accepts data in FXP format. The input FXP
fonnat is then one sign and 23 fraction bits. As we multiplex
the y and = path onto one output port the output FXP format
depends on whether the last pipeline stage has executed a
rotation or vectoring instruction (refer to Table I). In rotation
mode the format for both the z and yz output data is one
sign, 3 integer, and 20 fraction bits. The same is valid for
the = output in vectoring mode. The yz output format for
vectoring is one sign, two integer, and 21 fraction bits. In all
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cases the input and output FXP numbers are represented in
Sign-Magnitude format.

As mentioned in Section III, the chip also provides the
option of constant angle coding. In general, the implementation
of the CORDIC equations requires the knowledge of o; (see
(1)). This is accomplished in a control umit, located between
the zy and the z data path, which senses the sign of the
three data paths and computes o; depending on the current
instruction (3). In our case, we provided a special mode Which
can significantly speed up some matrix algorithms for linear
equation solving, i.e., QR decomposition and Givens rotation.
In these applications we start with computing the phase
of a vector and then rotate subsequent vectors (i.e., matrix
elements) by this angle. The special INI(tialize)-instructions
which are marked with |! in Table I use the angle of a
preceding phase calculation, thus avoiding a whole pipeline
latency of 44 cycles. Assume we have a continuous data stream
of (z,y) vector coordinates (a1, by), (ag, b2), (as, b3),... and
we want to rotate (az, ba), (a3, b3),. .. by the phase of (a1, b1),
e.g., tan~1(b1/ay). Then the input instruction sequence would
look: VECT, IROT, IROT, .... This is easily implemented in
the control unit by retaining the value of o; of the preceding
VECT instruction, a method which has beeén first reported in
[5].

At the end of the FXP pipeline the output data of the
iteration part of the FXP pipeline are appropriately scaled to
compensate for the scale factor k,, given by Table L. This is
accomplished by successive multiplication of the = and y data
path by (1 4+ sign(a(m, 1))2~12(md1), as defined by Table V.
This results in the desired vector contraction (m = 1,1/k; =
0.784039965) or extension (m = —1,1/k_; = 1.327798882).
This requires again add-and-shift operation which compared
with the original CORDIC equations demonstrates that we
only have to change the wiring procedure and the control
unit to achieve the desired effect, and do not have to alter
the data paths. The different shifts (depending on m) for each
scaling stage are implemented by adding a 3-to-1 multiplexer,
controlled by m, aind programming its input.

The front- and end-stage are connected to the pipeline via
scan-path registers. Because of the very high regularity of the
pipeline stages there is no need for a full scale internal scan-
path and the increase in chip area would be too costly if used.
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Fig. 7. Chip photomicrograph.
TABLE VI
TECHNICAL DATA
Process Double-metal CMOS
Design Rule 1.6 pm
Die Size 13.3 x 14.2 mm
Active Area 82 x 13.4 mm
Transistors 210,000
Package 280 pin PGA
# pipe stages (3+37+4)=44
Max. clock 10 MHz
Data format:
external 24b mant., 8b exp.
(IEEE~754 single prec.)
or
24b fixed point
internal 32b mant., 10b exp.
Instruction 6 bit

V. Curp DATA

The CORDIC-based arithmetic unit has been integrated in
an 1.6-um double-metal n-well CMOS process. The fabricated
device contains 210,000 transistors on an active die area of
110 mm? (Table III). The chip operates at 5 V power supply
voltage and 10 MHz clock and reaches a normalized peak
performance of 220 MFLOP’s. The chip is packaged in a 280
pin PGA and already first silicon was fully operational (Fig. 7).

VI. SUMMARY

In this contribution we have presented a CORDIC-based
arithmetic unit. Unlike other pipeline implementations, the
presented device realizes all available CORDIC functions. It
offers an extremely high computational flexibility (see Table
I). It adheres to IEEE-754 single precision FLP data format and
realizes the full set of available CORDIC functions. This yields
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a unique computational flexibility at high functional through-
put rates. To achieve the desired functionality in the underlying
technology, the inner pipeline and the shift wiring have been
carefully area optimized. Further chip area reductions are
possible, when employing the techniques recently reported in
[18]. The chip can be used for numerous applications, ranging
from matrix processing [10] to computer graphics [12] and
digital signal processing [13], [14]. In particular, hardware
implementations of fixed and adaptive lattice filters [15],
quadrature amplitude modulation {15], and image transforms
[16], [17] can be greatly simplified when using the CORDIC
algorithm on a chip.
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