
POWER REDUCTION IN PIPELINE DESIGNS 

F. Grassert F. Sill D. Timmermann 
Institute of Applied Microelectronics and Computer Science 

University of Rostock 
Richard-Wagner-Str. 31, D-18119 Rostock, Germany 

Tel.: 0049 381 498 - 3534; Fax: - 3601 
{frank.grassert, frank.sill, dirk.timmermann}@etechnik.uni-rostock.de 

Abstract. The realization of fast datapaths in signal processing environments 
requires fastest logic styles with synchronous behavior. This paper presents a 
systematic method which efficiently combines improvements on algorithm and 
logic level. Thus, the design of power efficient, fast and synchronous pipelines 
is possible. To reduce the power consumption of dynamic logic, we show 
methods for single-rail structures utilizing redundant number systems. 
Therefore, we discuss the realization of self-timed structures with single-rail 
logic and redundant number systems and we present a new scheme which eases 
the understanding and construction of such self-timed structures. First 
simulations for a horizontal redundant adder slice show area and power 
savings of 40% and 30% compared to complementary Domino logic. 

1 Introduction 

The realization of data-paths with highest performance, i.e., high throughput or low latency, 
is a main issue in the area of signal processing. Applications, e.g. in wireless environments, 
emphasize power consumption as an important criterion for comparisons. On the way to 
more efficient algorithms, redundant number systems like Carry-Save reduce evaluation 
time by avoiding carry propagation as long as we stay in the redundant number system. 
Beneath the algorithmic level, there are several possibilities on the logic level to speedup 
these data-paths. The use of dynamic logic like Domino [1] ensures fastest evaluation 
because only N-transistors realize the logic function (explained in section 2). The question 
and the main scope of this paper is how to realize such fast algorithms in dynamic logic in a 
power efficient way. 
As a realization for fastest evaluation with dynamic logic, Horowitz et al presented in [2] a 
self-timed scheme for a ring divider. In [3], the authors presented AC-TSPC logic,  an 
integration methodology for self-timed schemes in synchronous designs. Sechen discusses 
in [4] a scheme for single-rail dynamic logic. The advantages of redundant calculation are 
shown in papers like [5]. However, the efficient combination of algorithm and logic level 
remains an open question. 
In this paper, a combination of methods from algorithmic and logic level is presented which 
results in a scheme to design power efficient pipelines. The advantages of redundant 



number systems are combined with new ideas on logic level to realize inverting functions 
in dynamic, single-rail logic styles and to allow single-rail, self-timed structures. This use 
of single-rail, self-timed logic reduces power consumption in comparison to dual-rail logic 
structures and does not require netlists with only non-inverting functions. Section 2 
describes some basics for understanding the issues of dynamic logic. Section 3 describes 
the use of the self-timed structures in synchronous environments. Section 4 deals with 
possibilities for the combination of single-rail logic with self-timed schemes when 
implementing redundant number systems. A completion detection scheme is shown where 
redundant numbers are used in an advantageous way. Section 5 shows simulation results of 
a redundant adder row example and section 6 finishes with the summary. 

2 Basics 

Comprehension of the pros and cons of dynamic logic, distinction between single- and 
dual-rail and the resulting inference for clocking schemes is fundamental and will be 
discussed briefly. Figure 1 shows Domino logic [1] and True Single Phase Clock (TSPC) 
logic [6]. The dynamic principle is based on two phases controlled by a clock signal and 
can be explained for Domino as follows: during precharge phase (clock is low), the 
dynamic node is precharged to high and the output is reset to low. During evaluation phase 
(clock is high), the output node can be discharged to ground, depending on the input values 
of the logic tree. Because only N-transistors realize the logic function the evaluation is 
faster than in static CMOS. Again, because of merely N-transistors in the following logic 
the output load is less than in static CMOS. 
 

φ

N-blockIn

φ

N-logic N-logicinverter
DOMINO TSPC

Out
φ

In

φ

φ

N-latch

φ

φ

φ

P-logic P-latch

Out

dynamic node

 

Figure 1: Domino and TSPC logic; Domino needs more than one clock phase, TSPC has alternating N-logic, 
N-latches and P-logic, P-latches. 

However, there are two main disadvantages of dynamic logic styles: realization of inverting 
logic functions is difficult and  clock load is extreme as a clock signal is essential for the 
function of every single gate. In Domino logic, no inverting functions are possible at all 
(always an inverting dynamic stage with a following inverter) and, therefore, a netlist with 
only non-inverting functions is mandatory. In TSPC logic, an inverting function can be 
realized with a modified structure of the P-part, called N2-part. Mostly, dynamic logic is 
build up as a differential style like DCVSL. Here, both the inverted and the non-inverted 
output is generated independently. This results in two logic blocks thus often doubling the 
area. Furthermore, for an inversion inverted inputs are always necessary. 
In pipelined designs, clocking structure severely affects clock load. TSPC logic results in 
extreme pipelining with highest clock load because every logic gate realizes also a register 



function. This ensures highest throughput and clock frequency. For low latency, self-timed 
structures are better. Here, the evaluation time of the structure can be reduced to only the 
sum of the single gate evaluation times without additional delays through latches. As a 
compromise, the authors presented in [3] AC-TSPC logic which integrates short chains of 
self-timed logic into a synchronous design. This approach results in lower clock load and, 
consequently, lower power consumption. Furthermore, a latch-free structure is possible 
which reduces evaluation time and, again, power consumption. However, those 
advantageous methods are still only usable for dual-rail or differential dynamic logic styles, 
since completion detection is necessary. The generation of a completion signal in dual-rail 
structures is simple, because the outputs of all gates are on the same level during precharge 
phase. It is only during evaluation phase that the outputs of the independent complementary 
logic blocks exhibit different values. The evaluation is complete when this change is 
detected. 

3 Using self-timed structures in synchronous pipeline-designs 

3.1 Basics of self-timed structures 

There are two main ways to build up a self-timed scheme for dynamic logic: the gate 
outputs control the clocking of the preceding or the following gate. The main advantage of 
the first structure is a simple implementation with minimum evaluation time. If the 
evaluated outputs of a gate have settled, a completion signal is generated and this sets the 
previous gate in the precharge phase (inputs are processed – start precharge). Precharged 
outputs set the previous gate in the evaluation phase (outputs are precharged – start next 
evaluation, inputs can be processed). Because the evaluation of the outputs starts only with 
valid inputs, each gate is waiting for valid inputs during the evaluation phase. Therefore, 
the evaluation time of the critical path is only the sum of the gate evaluation times without 
additional delays. 
To clarify this behavior, figure 2 shows two consecutive dynamic dual-rail gates and their 
timing  diagram. As clock signals, the ready signals are used. In the starting point, all ready 
signals are high and, therefore, all gates are in evaluation phase and wait for valid inputs. A 
valid information on gate 1 is immediately processed and leads to valid outputs. Also, all 
consecutive gates process the data without delay. Therefore, in the signal diagram, the 
rising edges of I1, I2 and O2 follow directly one after another. As shown in figure 2, the 
falling edge of data signal I2 directly depends on the signal ready2, because ready2 sets gate 
1 in the precharge phase, thus resets the outputs.  

...

Gate 1 Gate 2

dual-rail
gate

dual-rail
gate

...

ready1

ready2

ready3

I1 I2 O2

I1

ready1

I2

ready2

ready3

O2

 

Figure 2: Basic self-timed structure and timing diagram; because the data signals I1, I2, O2 are complementary, 
X means the precharged, not valid state of data signals. 



The dependencies of the ready signals are shown in figure 2 for the signal ready2, as an 
example. Ready2 depends directly on the data outputs O2: valid outputs result in the falling 
edge and precharged outputs result in the rising edge of ready2. Furthermore, because 
ready2 is the clock signal of gate 1, ready2 has influence on the data signal I2. The result of 
this scheme is that all ready signals depend directly on the data outputs of a gate and the 
precharge of data signals depends directly on the clock signals. In contrast, the evaluation 
of data signals depends on both the clock signal and valid inputs. 
AC-TSPC [3] is a scheme to include such dual-rail self-timed structures in a global clock 
system. Hereby, it is possible to keep the critical path delay at minimum without additional 
delays through latches. Therefore, the evaluation time of the critical path is the minimum 
clock period. However, the structure must be carefully designed and a calculation of the 
timing behavior is advantageous. Furthermore, such structures reduce the sensibility against 
clock skew and, consequently, no additional delays for an ensured function are necessary. 

3.2 Integration in a global clock scheme 

Because a synchronous design of pipeline structures is essential, we present a modified 
scheme for the integration of short self-timed chains in a synchronous clocking scheme. 
Because each single dynamic gate requires a clocking signal, the reduction of the very high 
clock load is advantageously. Therefore, the application of a self-timed scheme which is 
integrated in a synchronous clock results in power reduction. For this, we present new 
modifications of the AC-TSPC logic [3]. A simple self-timed scheme of a few gates (3 to 
about 10) is realized (figure 3) and forms a synchronous block by controlling the last gate 
with the global clock. 
 

dynamic
logic
gates

dynamic
logic
gates

dynamic
logic
gates

dynamic
logic
gates

dynamic
logic
gates

dynamic
logic
gates

dynamic
logic
gates

dynamic
logic
gates

... ...

global clock

master 1 gates master 2 gates master 3 gates

dual-rail
gate

several
slave stages

... dual-rail
gate

dual-rail
gate

dual-rail
gate

 

Figure 3: Structure of a synchronous block with an internal dual-rail, self-timed scheme. 

In contrast to the old scheme, the new scheme is completely synchronous from an external 
point of view. Furthermore, the split into master and slave stages eases the comprehension. 
The last three gates are called master gates, and all others are called slave gates (see figure 
3). Notice, that the distinction between master and slave gate does not mean a different 
structure of these gates. All gates are of dynamic dual-rail logic. The main clock controls 
directly each last gate of a chain (third master gates). Indirectly, the clock controls then the 
behavior of the other two master gates through the self-timed structure. That means, that the 
precharge and evaluate phases of master gate two depend on the outputs of master gate 
three. Only when the global clock sets the master gate three in evaluation or precharge, a 
change of the phases of master gate two can be forced. A similar dependency obtains for 
master gate one which is controlled by master gate two. In contrast, the phases of all slave 
gates switch completely independent from the global clock. 



3.3 Starting point 

For the following explanation, all slave gates are in evaluation phase but have no valid 
inputs at the starting point (see also figure 2). That means that the completion signals of the 
stages are still high, because there are no valid inputs and no valid outputs. Thus, the gates 
wait in evaluation for the next inputs. The first master gates are in precharge phase with 
precharged outputs, the second master gates are in evaluation phase with valid outputs. 
These gates hold the information of such self-timed block. The third master gates are 
controlled from the global clock and stay in precharge phase. Their outputs are precharged 
and so the completion signals for the second master gates stay in evaluation. 

3.4 Evaluation of the slave gates 

In the starting point, the self-timed block is waiting for valid inputs. If these inputs arrive, 
all first slave gates evaluate their outputs. Because every following slave gate is also 
waiting for valid inputs, all slave gates evaluate successively without delay (see figure 2). If 
the outputs of a slave stage are processed, the completion signal is generated and sets all 
gates of the previous stage to the precharge phase. Then, the precharged outputs set the 
completion signal back to evaluation and, therefore, all gates of the previous stage are set to 
evaluation phase and wait for valid inputs. 

3.5 Evaluation of the master gates 

With the rising clock edge, all third master gates evaluate their outputs using the valid 
inputs from the second master gates which store the information. If the outputs of the third 
master gates are valid, these information is processed by the following slave gates of the 
next block. Furthermore, these outputs generate a completion signal which sets all gates of 
the previous stage (second master gates) to precharge. After precharge, the second master 
gates produce the completion signal to set all first master gates to evaluation. At this point, 
the information from the slave part can be processed. The evaluation continues up to the 
second master stage. If the outputs at this stage settle, a whole cycle of the block has 
finished. The global clock must be back to low value before the new information arrives at 
the inputs of the third master stage to prevent a run-through condition. 
There are constraints for an ensured function, e.g. the high phase of the global clock 
depends on the evaluation times of the first slave gates and signal connections between 
parallel blocks must be respected for the generation of the completion signals. We 
developed a software tool which automatically verifies a given netlist that all constraint are 
satisfied and which gives clues for further improvements of the netlist. 

4 Using Redundant numbers for single-rail self-timed schemes 

Because self-timed schemes are based on dual-rail structures to detect a complete 
evaluation, a method for completion detection in single-rail logic using redundant number 
representations is presented. 

4.1 Redundant numbers for self-timed structures 

The completion detection differentiates the states of the output nodes after precharge and 
after evaluation. Using a representation of a redundant number, it is possible to ensure a 
change of one or more bits which permits completion detection. This assumes that all 



parallel gates evaluate in a small range of time ∆t so that completion generation does not 
disturb slower or faster paths. This means, that the difference in evaluation time ∆t is small 
enough so that delayed output signals are valid before the input signals are precharged. This 
assumption seems reasonable in most small blocks with limited logic depth, e.g. in 
datapaths. As an example, table 1 shows a representation of a radix 2 signed-digit number, 
but similar coding is possible for other redundant number representations also with higher 
radix. The redundant digits –1, 0, 1 are represented with two signals, i.e. two bit. The bit 
representation ensures that at least one bit changes its value during evaluation. Therefore, a 
completion can be detected if we take both bits into account. Figure 4 shows such a 
structure. Another approach for a generalization of such completion detection was 
presented in [7]. 

... ...

single rail
gate

SD-bit 2
...

single rail
gate

SD-bit 1

...

stage N

single rail
gate

SD-bit 1

single rail
gate

SD-bit 1

single rail
gate

SD-bit 2

single rail
gate

SD-bit 2

stage N-1 stage N+1

 

Figure 4: Self-timed structure with dynamic, single-rail logic implementing a redundant number 
representation. 

Table 1: SD-digit representation. 

Digit Self-timed representation 
-1 10 
0 01 
1 11 

free 00 – precharge 

5 Example 

As an example, we choose a horizontal adder slice for a redundant multiplier using a 
signed-digit representation. First results are shown in figure 5. For testing purposes, 2-bit 
adder structures with 6 stages in a synchronous block were simulated with a 0.6 µm AMS 
process with 3.3V. However, an automatic timing calculation of our self-timed netlists is 
already in test which permits the realization of larger structures. Adder rows for a 32bit 
multiplier are planned and comparisons with TSPC logic and static CMOS should be 
possible. First netlists were processed by the timing calculation tool and the application of 
different logic styles with these netlists is simple. 
 
 



Power (µW/MHz)

Area (transistor no.)

Max. delay (ns)

30
21

1806
1055

ST

4,5
4

DOMINO Single-rail self-timed DOMINO  

Figure 5: Comparison of the SD-adder structure in single-rail, self-timed Domino logic and complementary 
Domino; ST marks the area for self-timed logic. 

6 Summary 

This paper presents a comprehensive approach for combining methods from algorithmic 
and logic levels of circuit design: With redundant numbers, dynamic, single-rail, self-timed 
logic providing inverting functions becomes feasible. Therefore, the approach of redundant 
number systems to speedup the evaluation can be enhanced with fast and power efficient 
logic styles. The single-rail logic saves area and power. The integration of self-timed 
structures in synchronous designs lowers the clock load and, therefore, the power 
consumption. The speed is maintained through the latch-free scheme. The used self-timed 
scheme results in totally synchronous blocks from the external point of view. The presented 
ideas show a way to design fast and power efficient pipeline circuits. As a first example, a 
redundant number adder was simulated and shows the possibility of realizing single-rail, 
self-timed circuits in dynamic logic. In comparison to a dual-rail Domino realization, the 
power and area consumption was reduced to about 70% and 60%, respectively. 

References 

[1] Krambeck, R. H., Lee, C. M., Law, H.-F. S.: High-Speed Compact Circuits with CMOS. Journal of Solid-
State Circuits, IEEE, Vol. SC-17, No. 3, June 1982. 

[2] Williams, T. E., Horowitz, M. A.: A Zero-Overhead Self-Timed 160-ns 54-b CMOS Divider. IEEE 
Journal of Solid-State Circuits, Vol. 26, No. 11, November 1991. 

[3] Grassert, F., Timmermann, D.: Dynamic Single Phase Logic with Self-timed Stages for Power Reduction 
in Pipeline Circuit Designs. IEEE International Symposium on Circuits and Systems (ISCAS), May 2001, 
pp. IV 144-147. 

[4] Yee, G., Sechen, C.: Clock-Delayed Domino for Dynamic Circuit Design. IEEE Transactions on VLSI 
Systems, Vol. 8, No. 4 , August 2000. 

[5] Kuninobu, S., Nishiyama, T., Edamatsu, H., Taniguchi, T., Takagi, N.: Design of High Speed MOS 
Multiplier and Divider Using Redundant Binary Representation. Proc. 8th. Symposium on Computer 
Arithmetic, New York, 1987, pp. 80-86. 

[6] Yuan, J., Karlsson, I., Svensson, C.: A True Single Phase Clock Dynamic CMOS Circuit Technique. 
IEEE Journal of Solid-State Circuits, Vol. SC-22, 1987,  pp. 899-901. 

[7] Grassert, F., Timmermann, D.: Single-Rail Self-timed Logic Circuits in Synchronous Designs. IEEE 
MWSCAS Conference, Tulsa, August 2002. 


