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Motivation

• Fast circuits

• Low power

• Simple, automatic synthesis

• Expensive calculations (e.g. cryptography)

→ Dynamic logic styles

• Wireless, battery-operated devices

→ Asynchronous logic

• Short turn around time

→ Global single phase clock
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True Single Phase Clock - Logic
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True Single Phase Clock - Logic
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Analysis of TSPC

Asynchronous Logic

Reduced
Used
Dropped
Improved

Disadvantages

• Clock-load
• Often dual rail
• Often unused P-block
• Clock-skew sensitive

Advantages

• Register-function
• Synthesis

• Speed: Throughput
Latency

Through self-timing
Short chains in single 
clock scheme
Reduced
Improved
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Asynchronous Chain (AC) – TSPC
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Asynchronous Chain (AC) – TSPC

• Pass starts with global clock
• Run through the chain
• Last stage waits for self-timed signal of following chain –

register function
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AC – TSPC – Timing

evaluation phase precharge phase

minimum cycle

Evaluation:
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AC – TSPC – Timing

Precharge:
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(AC – TSPC – Timing Parameters)

• Global clock longer than single cycle times
• Global clock equal evaluation time of critical path (no 

additional delay)
• Inclusion of self-timed gates with respect to parallel paths
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Example – Wallace Tree Multiplier

• Example: 8x8 Bit Multiplier:

128
cells

IN

Partial 
products

96
cells

74
cells

60
cells

50
cells

Wallace Tree

CPA

OUT

• TSPC: Pipeline of 15 stages – 15 cycles for multiplication
• AC-TSPC: five stages per cycle – 3 cycles for multiplication
• Identical dynamic n-parts

Stage: 1 2 3 4 5 6-15
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Results
Example: Wallace-Tree Multiplier; backannotated layout

2.51Minimum clock cycle

0.21Number of cycles for multiplication

0.51Minimum latency

0.251Power-Delay-Product

0.51
Power consumption for minimum 
clock cycle of AC-TSPC

AC-TSPCTSPC

Relative values for 0.6µm/3.3V (AMS)

Synthesis: 

• Short chains → simple calculation scheme for asynchronous 
parts → externally synchronous-like behaviour

• Automatic synthesis possible, but more steps
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Conclusion
• Improved power and latency with short asynchronous 

chains in a globally synchronous structure
• Reduced throughput
• Simpler clock-tree and robustness against clock skew
• Synthesis: 

– Splitting design in asynchronous parts, verifying parameters
– Arrange synchronous blocks

• Implementation of various logic styles (but dual rail)


