Dynamic Single Phase Logic with Self-timed Stages for Power Reduction in Pipeline Circuit Designs

F. Grassert, D. Timmermann

Institute for Applied Microelectronics and Computer Science

Department of Electrical Engineering and Information Technology

Outline

- Motivation
- True Single Phase Clock Logic
- Asynchronous structure
- Results
- Conclusions

Motivation

- Fast circuits
 - Expensive calculations (e.g. cryptography)
 - \rightarrow Dynamic logic styles
- Low power
 - Wireless, battery-operated devices
 - \rightarrow Asynchronous logic
- Simple, automatic synthesis
 - Short turn around time
 - \rightarrow Global single phase clock

Institute for Applied Microelectronics and Computer Science

True Single Phase Clock - Logic

Institute for Applied Microelectronics and Computer Science

Dynamic Logic with Self-timed Stages

True Single Phase Clock - Logic

Institute for Applied Microelectronics and Computer Science

Department of Electrical Engineering and Information Technology

Analysis of TSPC

Disadvantages

- Clock-load
- Often dual rail
- Often unused P-block
- Clock-skew sensitive

Asynchronous Logic

Reduced	+
Used (must be dual rail)	~
Dropped	+
Improved	÷

Advantages

- Register-function
- Synthesis
- Speed: Throughput Latency

Through self-timing
Short chains in single
clock scheme
Reduced
Improved

Asynchronous Chain (AC) – TSPC

Institute for Applied Microelectronics and Computer Science

Dynamic Logic with Self-timed Stages

Asynchronous Chain (AC) – TSPC

- Pass starts with global clock
- Run through the chain
- Last stage waits for self-timed signal of following chain register function

Institute for Applied Microelectronics and Computer Science

Department of Electrical Engineering and Information Technology

AC – TSPC – Timing

Institute for Applied Microelectronics and Computer Science

Dynamic Logic with Self-timed Stages

AC – TSPC – Timing

Institute for Applied Microelectronics and Computer Science

Dynamic Logic with Self-timed Stages

(AC – TSPC – Timing Parameters)

- Global clock longer than single cycle times
- Global clock equal evaluation time of critical path (no additional delay)
- Inclusion of self-timed gates with respect to parallel paths

Institute for Applied Microelectronics and Computer Science

Example – Wallace Tree Multiplier

• Example: 8x8 Bit Multiplier:

- TSPC: Pipeline of 15 stages 15 cycles for multiplication
- AC-TSPC: five stages per cycle 3 cycles for multiplication
- Identical dynamic n-parts

Institute for Applied Microelectronics and Computer Science

Results

Example: Wallace-Tree Multiplier; backannotated layout

	TSPC	AC-TSPC
Number of cycles for multiplication	1	0.2
Minimum clock cycle	1	2.5
Minimum latency	1	0.5
Power consumption for minimum clock cycle of AC-TSPC	1	0.5
Power-Delay-Product	1	0.25

Relative values for 0.6µm/3.3V (AMS)

Synthesis:

- Short chains \rightarrow simple calculation scheme for asynchronous parts \rightarrow externally synchronous-like behaviour
- Automatic synthesis possible, but more steps

Institute for Applied Microelectronics and Computer Science

Conclusion

- Improved power and latency with short asynchronous chains in a globally synchronous structure
- Reduced throughput
- Simpler clock-tree and robustness against clock skew
- Synthesis:
 - Splitting design in asynchronous parts, verifying parameters
 - Arrange synchronous blocks
- Implementation of various logic styles (but dual rail)

Institute for Applied Microelectronics and Computer Science