
DYNAMIC SINGLE PHASE LOGIC WITH
SELF-TIMED STAGES FOR POWER REDUCTION

IN PIPELINE CIRCUIT DESIGNS
F. Grassert, D. Timmermann

Institute for Applied Microelectronics and Computer Science
Department of Electrical Engineering and Information Technology

University of Rostock
Richard-Wagner-Str. 31, D-18119 Rostock, Germany

ABSTRACT
True single phase clock logic techniques, e.g. with alternating
arranged N- and P-logic cells, yield easy to design circuits with
standard cells and high speed potential. The disadvantages are a
difficult clock tree design and high power consumption. To
realize every logic function, dual rail or differential styles are
chosen which increase clock load. This paper presents a method
to speed up dynamic single clock circuits. The advantage of
asynchronous logic is that the critical path delay is the sum of
only the evaluation times of the single logic blocks without
wasting time for waiting, latches, or redundant logic. Therefore,
this work assembles small asynchronous chains of dynamic logic
blocks into one period of the global clock to minimize the
unused time per clock cycle (AC-TSPC). However, the
synchronous single phase clocking scheme is maintained. The
advantages of this method are shorter latencies for calculations,
power reduction by smaller clock trees and no need for latches,
and a simpler clock distribution network due to increased clock
skew tolerance. The results of the simulations of an 8x8 bit
multiplier in TSPC and in AC-TSPC show an enhancement in
power-reduction of 40% for the logic and of 89% for the clock
tree with a latency reduction of 40% and more in comparison
with TSPC.

1. INTRODUCTION

The true single phase clocking (TSPC) (figure 1) scheme
introduced in [6] yields fast dynamic logic with a single clock
tree. But the speed of this logic style calls for very fast clocks
with low skew. Therefore, clock distribution became a nontrivial
problem. Skew tolerant logic styles can greatly reduce the cost of
clock trees. Other disadvantages of the TSPC style in [6] are time
consuming latches and evaluation times of the P-logic trees
which are much bigger than the evaluation times of the N-logic.
For fastest designs the minimal clocking frequency is aligned to
the evaluation time of the slowest N-logic block. As a result the
P-block is nearly unusable for logic evaluation to prevent a slow-
down of cycle time.

Domino logic (DOMINO) is a simple realization of the dynamic
idea but requires two clocking signals in minimum (figure 1).
However, DOMINO logic offers big advantages in speed. Harris
et.al. [4] published a skew tolerant realization where a scheme of
overlapping clocking signals requires no latches and decreases
sensitivity to clock slopes. Propagation delay of the logic path is
the sum of the evaluation times of the single logic blocks only
plus inverter or static logic delay.

A different approach is the use of dynamic logic styles in

asynchronous designs. In [5], a divider using a ring structure was
realized and yields no delay in addition to the evaluation time.
Such self-timing techniques require completion signals and
therefore, differential logic styles or dual rail realizations are
used. In [7], Cascode Voltage Switch Logic (DCVSL) was
introduced as a differential logic (figure 1) which built the
starting point for several new logic styles. It was derived from
two DOMINO logic blocks with complementary functions,
merged logic trees, and a shared clocked N-transistor. Complex
logic functions can be realized in one differential gate with less
transistors. The recently published proposals [8,9] demonstrate
the ongoing interest in dynamic differential logic.

Dynamic logic styles often require dual rail structures to realize
every logic function. The difference between dual rail and
differential structures is that any single rail logic can be
converted to dual rail logic by independently building the
complementary logic part. In a differential logic style the
complementary functions are merged together and are not
independent.

In this paper we present a novel technique which can be
implemented in a single clock design. However, subsequent gates
are connected in an asynchronous style. This results in shorter
evaluation time due to missing delay between stages and due to
missing latches. As an example, DOMINO logic is used in a
complementary way to generate completion signals for self-
timing. An 8x8 multiplier circuit shows the potential of this
technique with respect to speed and power-reduction. The main
focus for our implementation is put on a design with simple logic
cells. Therefore, all transistors were simulated with minimal
widths and no special deviations were made. In section 2, the
basics of dual rail logic will be explained. The realization of
asynchronous logic is introduced in section 3. In section 4 the
design of an 8x8 multiplier is explained and the results are
discussed in section 5. Section 6 presents the conclusions.

Figure 1. TSPC, Domino, and DCVS logic; TSPC has
alternating P-logic and P-latches; DCVSL merges the
complementary logic function in the n-block; Domino
and DCVS need more than one clock signal

φ

n-Block

OUT

n-Logik

φ

InverterInverter

OUT

φ

φ

n-Block φ
OUT

IN

n-Latchn-Logik

φ

φ

n-Block

OUT

IN

n-Logik Inverter

TSPC

IN

Domino DCVS

IEEE International Symposium on Circuits and Systems (ISCAS´2001), ISBN: 0-7803-6685-9, S. IV 144 - 147, Sydney, Mai 2001

2. DYNAMIC LOGIC FOR
DIFFERENTIAL USAGE

Dynamic logic styles as depicted in figure 1 employ the same
principle of precharge and evaluation phase. These phases are
dictated by the clocking signal. The following explanation is
valid for an N-logic block. During precharge (clock low), the P-
transistor connects the output-node of the dynamic gate to VDD
thus charging the output capacitance to high. In the evaluation
phase (clock high) the clocked N-transistor is turned on.
Depending upon the input values of the logic tree the output
node can be discharged to ground. Therefore, the evaluation
phase realizes the logic function. A P-logic block works in a
complementary manner with clock signal being high during
precharge and vice versa.

TSPC logic (figure 1) uses alternating dynamic N-logic and P-
logic blocks connected to N- or P-latches, respectively. In one
clock cycle both N- and P-blocks evaluate and precharge. The
speed is determined by the slowest action, i.e., evaluation of
logic-block and latch (P or N) or precharge of the internal nodes
(to high or low).

DOMINO logic uses N-logic blocks only with subsequent static
inverting logic, e.g., an inverter. If two sequential gates (dynamic
and static part) use the same clock the evaluation proceeds to the
first gate and then immediately to the second one. During
precharge, each output of the inverting static logic goes low.
Therefore, subsequent logic trees can not connect to ground. In
two cascaded gates with different clocks the second gate accepts
the output signal of the first gate if both evaluation phases
overlap. The evaluation phase of the first gate has to hold until
the internal node of the second gate is fully settled. Otherwise,
information is lost. The precharge of the previous gate does not
effect the settled outputs of the next one because of high to low
transition only at the inputs.

DCVSL, as an example of a differential logic structure, always
evaluates two complementary output values and operates like
DOMINO. At the end of evaluation the difference at the outputs
can be used for completion detection. The main benefit of
differential logic compared with simple dual rail is that the logic
tree can be partially shared. An implementation of complex logic
functions with less transistors is feasible. However, if two
independent domino stages or other single rail logic styles are
used instead the same functionality can be realized.

3. CONDITIONS OF ASYNCHRONOUS
LOGIC

3.1 Basics for Self-timing

Dynamic logic with a complementary structure can be arranged
in an asynchronous way. The completion signal of one gate can
inform the previous gate to switch to precharge phase. For a dual
rail structure with DOMINO or DCVSL a completion signal
from a NOR can be directly used as the clock signal for the
previous gate. Figure 2 depicts this structure. The calculations
start with the first gate and propagate the chain without stopping.
A ring structure is examined in [5]. The proper behavior of such
self-timed structures is based on the following formulas. The
cycle of one gate starts with the evaluation and ends when the
next evaluation phase begins. Minimum cycle time occurs when
the change of the clock signal to the evaluation phase matches
the arrival of the inputs. Therefore, the minimum cycle time
starts with the arrival of the inputs with the assumption that the
gate is already in the evaluation phase. The following formula
calculates this minimal cycle time tCmin’:

tCmin’ = tR‘+ tR’’ + tR’’’ + tReady’’’ + tLoad’’ + tReady’’,

where tR’, tR’’, and tR’’’ are the time of the logic calculation up to
the moment the outputs are settled, tReady’’’ and tReady’’ are the
slope times of the completion signals from the gates respectively
and tLoad’’ is the time for precharging the output signals of gate
two (figure 2). The signal propagates through all three gates. The
completion signal of the third gate sets the clock signal of gate
two in the precharge phase. After precharge, the completion
signal of gate two sets the clock signal of the first gate back to
evaluation. Figure 2 shows these signal flows which occur during
the evaluation and the precharge phases. The minimum time of
the evaluation phase tEmin’ results from:

tEmin’ = tR’ + tR’’.

The time tReady’’ of the slope of the completion signal is
completely excluded, because the exact finish of evaluation is
unpredictable. But calculations with a shorter evaluation phase
will not risk the functionality. The time of the precharge phase
then results from:

tL’ = tCmin’ – tEmin’ – tReady’’’ – tReady’’ = tR’’’ + tLoad’’.

The minimum evaluation phase is subtracted from the minimum
cycle time. Again, the slope times of the completion signals are
not taken into account. If the inputs arrive after the evaluation
phase has started it does not effect the duration of the precharge
phase but the cycle time and the duration of the evaluation phase
will increase. If the inputs arrive earlier a delay happens. To
avoid this problem, a delayed arrival of the inputs at the first
gates is advantageous.

3.2 Cooperation with Globally Synchronous Systems

The main goal of this work is to arrange small asynchronous
chains of logic in a synchronous design (AC-TSPC) (figure 3). A
single phase global clock with same duration of high and low
phase clocks the first gate. The following gates are connected via
the self-timing scheme. The last gate derives its clock from a
completion signal of the following first gates. In case the runtime
of the sequence is nearly half the clock cycle time, the end of the
precharge phase of this gate will delay. Therefore, the runtime

Figure 2. Scheme for self-timing of dynamic dual rail
logic; the thick lines show the direction of the signals
which define the duration of the phases

tReady’’ tReady’’’

...
dual rail
dynamic

logic
tR’’

tLoad’’

clock clock clock clock
dual rail
dynamic

logic
tR’

tLoad’

signal flow that indicates the time of evaluation phase

signal flow that indicates the time of preload phase

tR’ tR’’ tR’’’ tReady’’’ tLoad’’ tReady’’

tReady’’

tCmin’

tEmin’ tL’

dual rail
dynamic

logic
tR’’’

tLoad’’’

dual rail
dynamic

logic
tR

4’
tLoad

4’

dual rail
dynamic

logic
tR

5’
tLoad

5’

dual rail
dynamic

logic
tR

6’
tLoad

6’

clock clock

...

tReady’ tReady
4’ tReady

5’

will be increased. But this does not corrupt the function. If no
logic follows the last gate or another logic style is used a simple
delay of the global clock through inverters can be used as a
completion signal which clocks the last gate. It has to be assured
that the outputs are processed correctly of the following logic.
The main boundaries for an implementation are:

a) tminRun > tClock / 2

b) tmaxRun < tClock

c) tCmin < tClock

where tClock is the cycle time, tminRun and tmaxRun are the minimum
and maximum propagation delay of the block, respectively
(figure 4). The first condition holds because the first gate remains
in the evaluation phase for half a clock cycle. If the outputs of the
previous chain settle before this gate precharges the inputs are
lost. The second condition means that calculation has to be
finished in one clock cycle. At least the clock cycle has to be
longer than every single minimum cycle time tCmin of the gates.
The minimum number of logic gates in the chain depends on
condition c and is about five. To achieve maximum performance
it has to be verified that for maximum evaluation time tmaxRun of
the gates the inputs at all gates arrive after the beginning of the
evaluation phases to waste no time.

3.3 Skew Behavior and Inferences for Implementation

In our implementation of asynchronous logic inside a
synchronous design the main problems of self-timing can be
solved through calculation of the parameters of the logic cells at
design time. The values to be considered are the shortest and the
longest path that can exist. This includes connections between
two or more parallel chains. Due to the very short chains no
significant differences between the timing schemes can occur.
The last gate of a sequence waits until the next first gate

generates the completion signal and the first gate waits until the
inputs are settled, respectively. Therefore, clock skew is not
harmful to some extent. A skew of the falling edge has to be
taken into account in condition a), so we get:

a2) tminRun > tClockHigh + tSkew.

An earlier rising edge does not effect the runtime because the
logic waits for the arrival of the inputs. Clock skew imposes the
following boundaries:

d) 2 . tRmax < tClockHigh - tSkew,

e) tLoad < tClockLow – tSkew.

tRmax is the longest evaluation time for a single logic, tClockHigh

and tClockLow denote the mean time of the high and low phase of
the global clock, respectively. tSkew represents the positive or
negative skew of the phases. Because the skew lengthens the low
phase and shortens the high phase and vice versa the same value
is used to calculate the shortest low and high phases. Here, the
skew value covers also the clock slopes. Figure 4 depicts this
skew tolerance.

4. IMPLEMENTATION OF THE
MULTIPLIER

An 8x8 bit multiplier was designed for verification. The
simulations were made for an AMS 0.6 ������������	��
����

�

with 3,3 V and minimum transistor sizes. The main focus has
been put on the use of small and simple standard cells for single
rail use. This decision was made as a TSPC design flow from
simple standard cells exists and so a comparison between these
two realizations can be done easily [10]. The design was made in
a dual rail style, i.e. each dynamic cell has one output only but
the inputs can be complementary. In step two the same logic
functions were structured in the asynchronous style with
DOMINO. Note that other logic styles could be used as well.

Figure 3. Scheme for implementation of an asynchronous block in a synchronous design; the synchronization happens with the
first gate; differences in timing are small due to the short length of the block

Figure 5. Structure of the implemented multiplier

AND Stage
4 Stages Wallace-Tree

s - sum
c - carry

s
0

s
1

s
2

s
3

c s
4

c s
5

c s
6

c s
7

c s
8

c s
9

c s
10

c s
11

c s
12

c s
13

s
14

10 Bit (10 Stages) Ripple Carry Adder
567891011121314

Buffer (10 Stages)
carry out

567891011121314 01234

16 Bit Result

8 Bit Input 8 Bit Input

Part for Power and Current Measurements

Figure 4. Important signals for the asynchronous chain in
a timing scheme with clock skew; the evaluation times
are usually directly connected; a delay occurs for the last
stage for very short calculations but does not influence
the function

tRmaxtRmax n

SkewSkewglobal clock

tmaxRun
tRmax tRmax 1’

tminRun
n2 3 4 fastest n

delayed evaluationcritical
clock signal
of last stage

1’

tLoad

tReady

tClockHigh-tSkew

tClock

tClockHigh tClockLow

tClockLow-tSkew

...
...

Skew

1’tRmin

Asynchronous Chain of Logic

... ...

global clock

clock clock clock

NOR

dual rail
dynamic

logic

NOR

dual rail
dynamic

logic

dual rail
dynamic

logic

dual rail
dynamic

logic

NOR

dual rail
dynamic

logic

global clock

clock clock

NOR

dual rail
dynamic

logic

dual rail
dynamic

logic

dual rail
dynamic

logic

...

5 Bit Ripple Carry Adder

A fully pipelined ripple carry adder structure was implemented.
Therefore a TSPC realization needs five clock cycles for these
adder stage. The asynchronous approach incorporates these five
logic stages in one chain and needs only one clock cycle. This
adder structure is used later to build the carry propagate adder
(CPA) at the end of the multiplier.

8x8 Bit Wallace Tree Unsigned Integer Multiplier

A multiplier was implemented using a Wallace tree described in
[1] and [2] (figure 5). The multiplier consists of four stages with
carry-save adder (CSA) circuits and one preceding stage with the
AND functions of the inputs. Therefore, the TSPC realization
again has a latency of five clock cycles. Again, all five stages
were merged to one chain in the asynchronous style. Two 5-bit
ripple carry adders perform the final addition of the sum and
carry bits of the Wallace tree. This realization results in a latency
for TSPC of 15 clock cycles and for AC-TSPC of 3 clock cycles.
In such pipelined designs output signals have to be stored in
registers while others are processed. In the TSPC structure this
means one buffer for each clock cycle and each signal. In the
AC-TSPC structure the same TSPC buffers can also be used but
the number of buffers is extremely reduced.

5. RESULTS

Table 1 gives the simulated results for the maximum frequency of
the TSPC and AC-TSPC multipliers, the latency, the power
consumptions and the maximum currents. The simulations for
current and power consumption are given for the Wallace tree
only due to a big difference in buffers for the ripple carry adder
(TSPC: 180; AC-TSPC: 20). Therefore, results including these
parts would hide the advantages of the asynchronous approach.
On the other side, this effect demonstrates the advantage of AC-
TSPC to reduce buffer efforts by mixed logic styles.

Table 1. Comparison of TSPC and AC-TSPC Multiplier Stage

TSPC AC-TSPC
min. cycle time (ns) 1.2 3.6
min. latency (for 3.6 cycle) (ns) 6 (18) 3.6 (3.6)
avg. power in VDD (3.6ns) (mW) 211 126
avg. power in clock (3.6ns) (mW) 183 20
max. current in VDD (3.6ns) (mA) 706 113
max. current in clock (3.6ns) (mA) 1080 123

The minimum clock cycle for TSPC-logic is much faster but the
AC-TSPC logic calculates five logic gates in one cycle while
TSPC can only calculate one logic gate in that time. Therefore,
the overall latency of the AC-TSPC logic is shorter. It should be
mentioned that the higher clock rate for the TSPC logic results in
much higher power consumption. The simulations for the power
consumption were made with a unified cycle time of 3.6 ns for
both circuits. Therefore, the latency of AC-TSPC logic is then
five times shorter. The reduction of the power consumption
through dynamic switching is nearly 40%. The reduction of the
clock load results in a 89% reduction of the power consumption.
The reduction of the maximum current is also important for the
design of the clock tree. The gates of the asynchronous logic
switch sequentially. Therefore, the maximum current is extremely
reduced (84%). A big advantage is the possibility to mix TSPC

style with AC-TSPC chains. A circuit can use the benefits of
both logic styles. This is also valid for implementing differential
logic styles (e.g. DCVSL) in the asynchronous chains and joining
these sequences with TSPC logic.

6. SUMMARY

This paper presents an implementation of asynchronous logic in
a globally synchronous dynamic design which offers advantages
in speed, power consumption, and in the reduction of the design
effort for the clock tree. The simulated 8x8 bit multiplier with
AC-TSPC logic exhibits a power reduction of 40% for the logic
and of 89% for the clock tree. This is the result of the reduction
of the clock tree capacitance due to the asynchronous logic
chains. Furthermore, the latency of the circuit is reduced in
comparison to a TSPC design because one clock cycle can be
used more efficient. A realization of the AC-TSPC style is easy
due to the possibility to connect simple cells in a dual rail style
but also differential logic styles can be used. However, a
combination with normal TSPC logic causes no problems. The
advantages in skew tolerance for the clock tree and in reduction
of the maximum currents on clock and VDD signals makes the
design flow easier and more robust. Nevertheless, a careful
design of the dynamic gates is required due to spikes and
hazards. The application of this method is for fast design with
short latencies and a single clock, e.g. algorithms for cryptology.

7. REFERENCES
[1] N. H. E. Weste and Kamran Eshraghian, Principles of

CMOS VLSI Design. Reading: Addison-Wesley Publishing
Company, 1994.

[2] I. Koren, Computer Arithmetic Algorithms. Englewood
Cliffs: Prentice Hall, 1992.

[3] P. Ng, P. T. Balsara and D. Steiss, Performance of CMOS
Differential Circuits. IEEE Journal of Solid-State Circuits,
Vol. 31, No. 6, June 1996.

[4] D. Harris and M. A. Horowitz, Skew-Tolerant Domino
Circuits. IEEE Journal of Solid-State Circuits, Vol. 32, No.
11, November 1997.

[5] T. E. Williams and M. A. Horowitz, A Zero-Overhead Self-
Timed 160-ns 54-b CMOS Divider. IEEE Journal of Solid-
State Circuits, Vol. 26, No. 11, November 1991.

[6] J. Yuan, I. Karlsson and C. Svensson, A True Single Phase
Clock Dynamic CMOS Circuit Technique. IEEE Journal of
Solid-State Circuits, Vol. SC-22, 1987, pp. 899-901.

[7] L. G. Heller, W. R. Griffin, J. W. Davis and N. G. Thoma,
Cascode Voltage Switch Logic: A Differential CMOS Logic
Family. Proceedings IEEE International Solid-State Circuits
Conference, 1984, pp. 16-17.

[8] D. Somasekhar and K. Roy, LVDCSL: A High Fan-In,
High-Performance, Low-Voltage Differential Current
Switch Logic Family. IEEE Transactions on VLSI Systems,
Vol. 6, No. 4, December 1998.

[9] J. Park, J. Lee and W. Kim, Current Sensing Differential
Logic: A CMOS Logic for High Reliability and Flexibility.
IEEE Journal of Solid-State Circuits, Vol. 34, No. 6, June
1999.

[10] A. Wassatsch, DYNAMIC – A Java Based Toolset For
Integrating Dynamic Logic Circuits Into A Standard VLSI
Design Flow. International Cadence User Group Conference
ICU, San Jose, September 2000, SIG IC - ic6.

