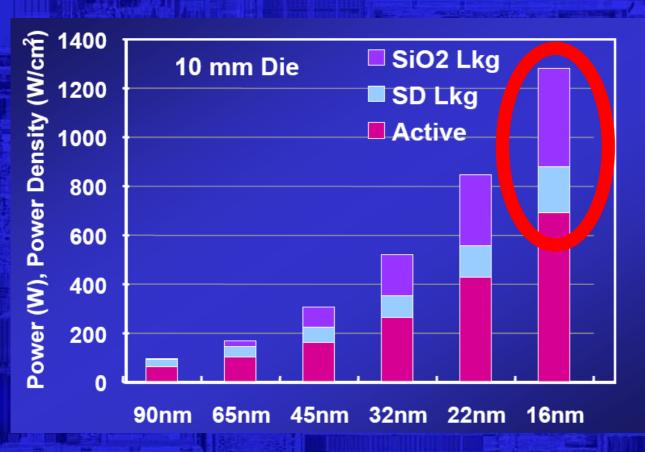


Maritimes Symposium 2007, Rostock

Frank Sill, <u>Claas Cornelius</u>, Dirk Timmermann 09. Oktober 2007

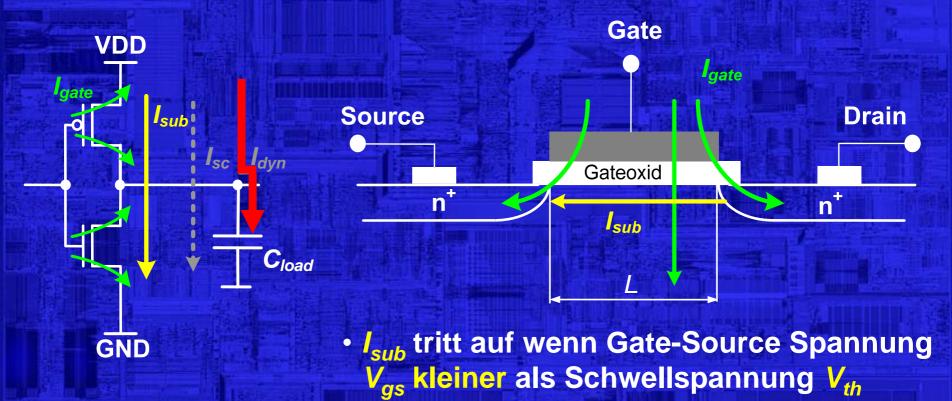
Ziel dieser Arbeit


 Einführung eines Ansatzes zur Leckstromreduzierung

2. Vorstellung eines erweiterten

Zuweisungsalgorithmus für Ansätze auf
Gatterebene

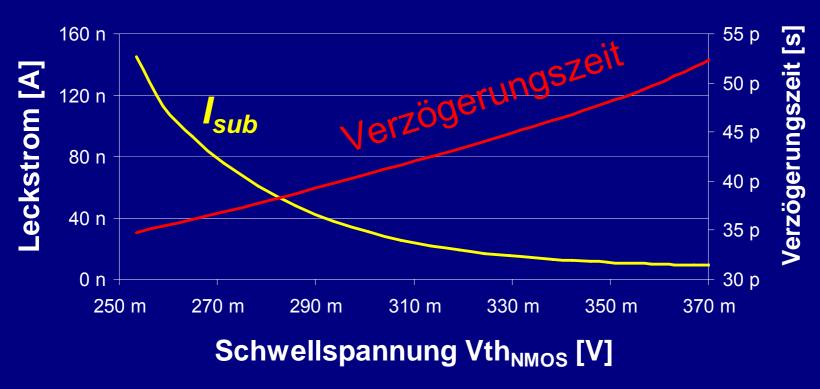
Motivation

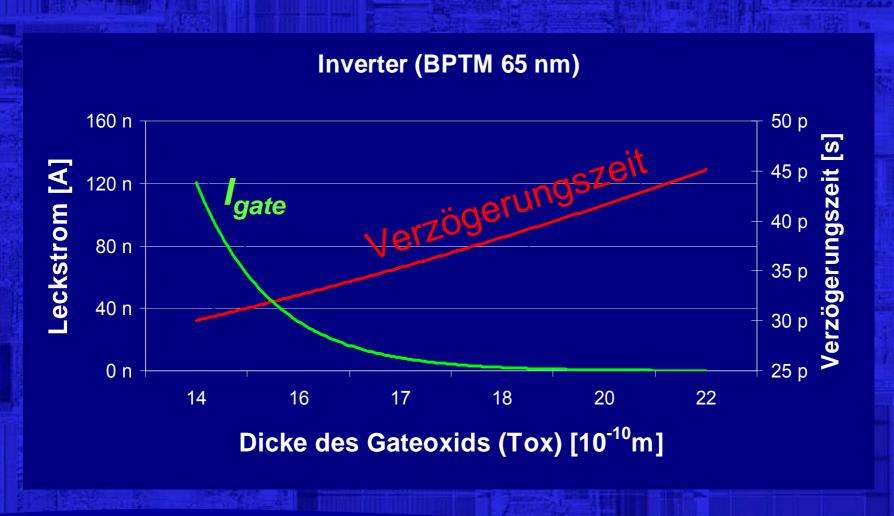

Bis zu 50 % wird (*ist !*) Leckstrom!

SiO2 Lkg - "Gate oxide" Leckstrom (I_{gate})

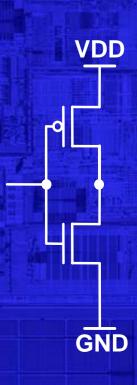
SD Lkg – "Subthreshold" Leckstrom (*I_{sub}*)

S. Borkar, '05


Leistungsverbrauch in CMOS-Schaltungen


 I_{gate} basiert auf "Tunnelströmen" durch das Gateoxid

V_{th}, Verzögerungszeit und Leckstrom


T_{ox}, Verzögerungszeit und Leckstrom

Dual - V_{th}/T_{ox} - Ansätze

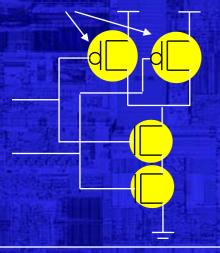
Einsatz von zwei unterschiedlichen Transistortypen:

- "low-V_{th}"- oder "low-T_{ox}"-Transistoren
 - Niedrige Schwellspannung oder dünne Oxidschicht
 - Für zeitkritische Bereiche
 - Führt zu hohem Leckstrom
- "high-V_{th}" oder "high-T_{ox}"-Transistoren
 - Hohe Schwellspannung oder dicke Oxidschicht
 - Für zeitunkritische Bereiche
 - Führt zu niedrigem Leckstrom

Dual - V_{th}/T_{ox} - Ansätze

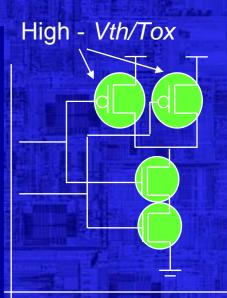
Einsatz von zwei unterschiedlichen Gattertypen:

- Gatter mit "low-V_{th}"- oder "low-T_{ox}"-Transistoren
 - Niedrige Schwellspannung oder dünne Oxidschicht
 - Für zeitkritische Bereiche
 - Führt zu hohem Leckstrom
- Gatter mit "high-V_{th}" oder "high-T_{ox}"-Transistoren
 - Hohe Schellspannung oder dicke Oxidschicht
 - Für zeitunkritische Bereiche
 - Führt zu niedrigem Leckstrom



Der "Mixed Gates" Ansatz

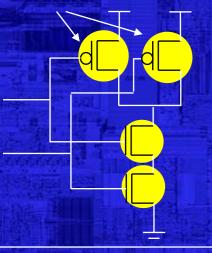
- Bisherige Ansätze:
 - Ansatz auf Transistorebene
 - Logische Gatter nur mit einem Transistortyp
 - Transistoren unterscheiden sich nur in V_{th} oder T_{ox}
 - Zwei Gattertypen
- Mixed Gates:
 - Gatter aus unterschiedlichen Transistortypen
 - Transistoren unterscheiden sich in V_{th} und T_{ox}
 - Drei Gattertypen

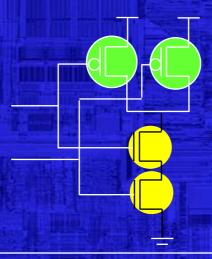

"Dual Gates" - NAND2

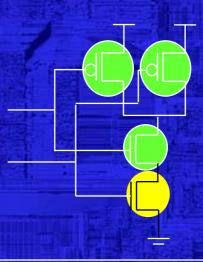
Low - Vth/Tox

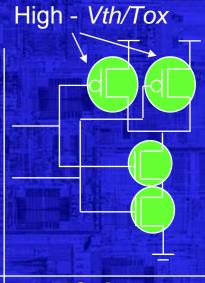
LVTO-Gatter

- MinimaleVerzögerungszeit
- Sehr großer Leckstrom




HVTO-Gatter


- MaximaleVerzögerungszeit
- Minimaler Leckstrom

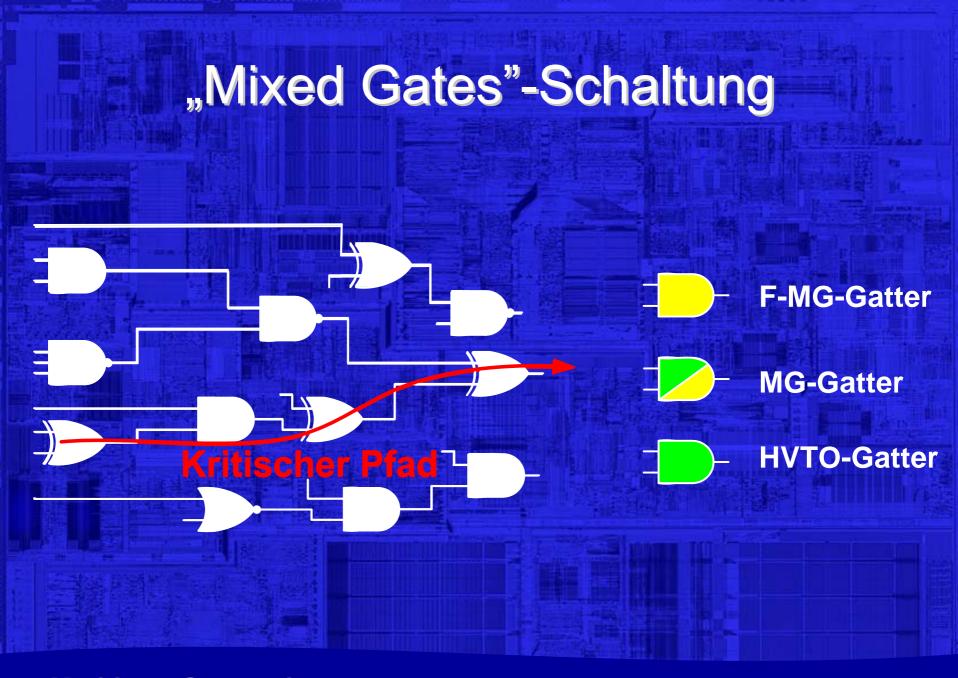

"Mixed Gates" - NAND2

Low - Vth/Tox

LVTO-Gatter

- MinimaleVerzögerungszeit
- Sehr großer Leckstrom

F-MG-Gatter


- MinimaleVerzögerungszeit
- großer Leckstrom

MG-Gatter

- MittlereVerzögerungszeit
- MittlererLeckstrom

HVTO-Gatter

- MaximaleVerzögerungszeit
- MinimalerLeckstrom

Zuweisung der Gattertypen

- Bestimmung Gattertypen über prioritätsbasierte Zuweisungsalgorithmen (PZA)
- PZA nutzen Bewertungsfaktoren zur Charakterisierung der Gattertypen und Gatter
- Zuweisung der Gattertypen anhand der Bewertungsfaktoren
- Bekannte Algorithmen:
 - Kato [Kat00]: Keine Betrachtung der Gattertypen
 - Engel [Eng06]: Betrachtung von Gattertypen
 - Li [Li93] : Betrachtung von Gattertypen und teilweise maximal/minimal Werten innerhalb der Schaltung

Neuer Algorithmus

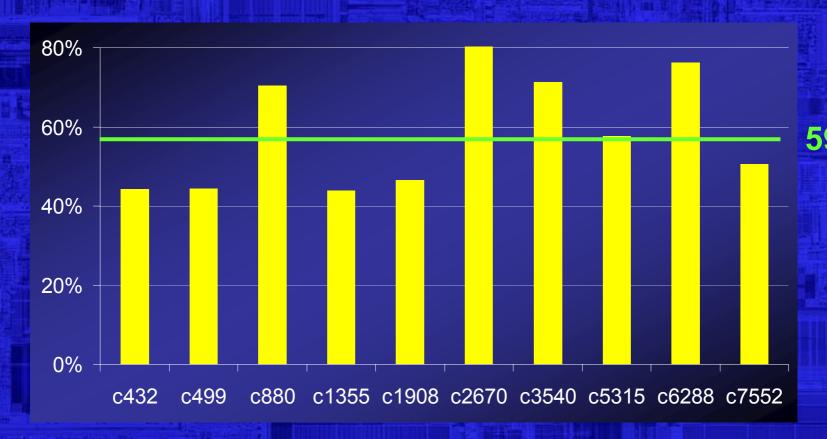
- Verwendete Bewertungsfaktoren:
 - t_{slack} maximale Erhöhung der Gatterverzögerungszeit ohne Auswirkungen auf Schaltungs-Performance
 - t_{d_diff} Änderung der Gatterverzögerungszeit durch die Zuweisung von neuem Gattertyp
 - I_{leak_diff} Änderung des Gatterleckstroms durch die Zuweisung von neuem Gattertyp
 - n_p Anzahl der Pfade, in denen sich das Gatter befindet
- Alle Parameter relativiert zu minimalen und maximalen Werten innerhalb der Schaltung

Neuer Algorithmus

- Hoher Gatterbewertungsfaktor (= hohe Wahrscheinlichkeit für Zuweisung von "Low Leakage"-Gattertyp) wenn:
 - Gatter in wenigen Pfaden $(n_p \downarrow)$
 - Hohe Leckstromdifferenz (I_{leak diff} ↑)
 - Geringe Verzögerungszeitdifferenz (t_{d diff} ↓)
 - Großer Slack (t_{slack} ↑)
- Bewertungsfaktoren werden gewichtet
- Zusätzlich Anpassung aller Parameter anhand Verteilungsfunktion → reduziert Einfluss von Extremwerten

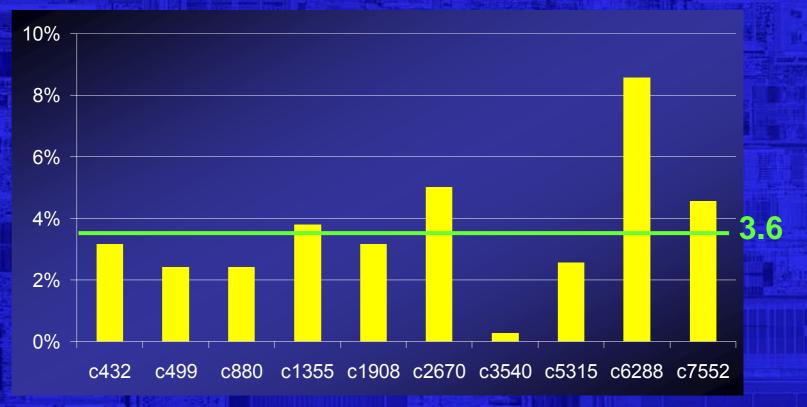
Neuer Algorithmus

Wichtung der Parameter

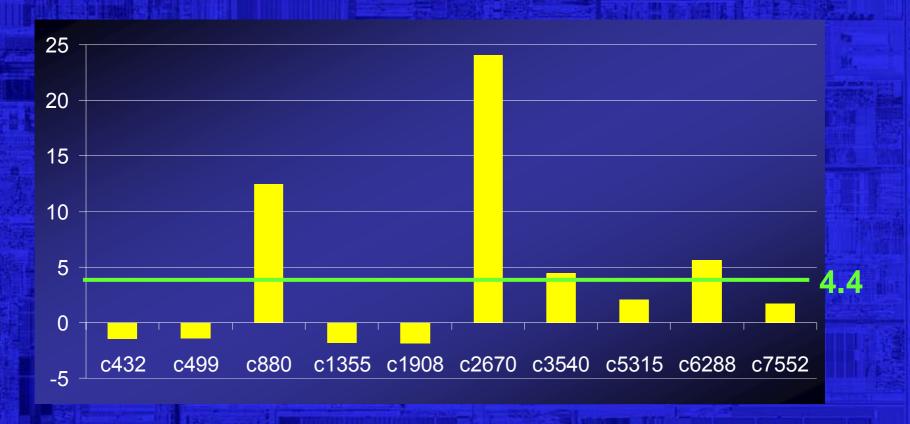

Anpassung wg. Einfluss von Extremwerten

$$\mathcal{Y} = \kappa_{np} \left(1 - \left[n_{P_r} + n_{P_add} \right] \right) + \kappa_{lleak} \left[I_{leak_diff_r} + I_{leak_diff_add} \right] \dots$$

$$\dots + \kappa_{td} \left(1 - \left[t_{d_diff_r} + t_{d_diff_add} \right] \right) + \kappa_{slack} \left(t_{slack_r} + t_{slack_add} \right)$$


$$\boldsymbol{X}_{_r} = \frac{\boldsymbol{X}_{max} - \boldsymbol{X}}{\boldsymbol{X}_{max} - \boldsymbol{X}_{min}}, \boldsymbol{X} \in n_P, \boldsymbol{I}_{leak_diff}, \boldsymbol{t}_{d_diff}, \boldsymbol{t}_{slack}$$

Resultate: "Mixed Gates"


Leckstromreduzierung durch Anwendung des "Mixed Gates"-Ansatzes (bei konstanter Performance)

Resultate: PZA-Vergleich (Leckstrom)

Zusätzliche Leckstromreduzierung durch den neuen Algorithmus gegenüber bekannten Algorithmen

Resultate: PZA-Vergleich (Aufwand)

Reduzierung des Rechenaufwands durch den neuen Algorithmus gegenüber bekannten Algorithmen

Zusammenfassung

- Einfluss des Leckstroms auf Energieverbrauch steigt stetig an
- "Mixed Gates"-Ansatz verwendet unterschiedliche Transistorentypen innerhalb der Gatter
- Drei "Mixed Gates"-Gattertypen mit verschiedenen Verzögerungszeiten und Leckströmen
- Neuer Zuweisungsalgorithmus reduziert Einfluss von Extremwerten
- "Mixed Gates"-Ansatz reduziert Leckstrom um durchschnittlich 59 %

Referenzen

- [Eng06] Engel, K.; Kalinowski, T.; Labahn, R.; Sill, F.; Timmermann, D. "Algorithms for Leakage Reduction with Dual Threshold Design Techniques", In *Proc. of Intern. Symposium on System-on-Chip* (SOC), pp. 111-114, Tampere, Finland, 2006.
- [Kat00] Kato, N. et al. "Random Modulation: Multi- Threshold-Voltage Design Methodology in Sub-2V Power Supply CMOS", In *IEICE Transactions on Electronics*, vol. E83-C, no. 11, pp. 1747-1754, November 2000.
- [Li93] Li, W. N.; Lim, A.; Agrawal A.; Sahni, S. "On the circuit implementation problem", In *Proceedings of ACM/IEEE Conference on Design Automation* (DAC), pp. 478-483, 1993.