Modeling the power-reliability tradeoff in on-chip networks

Claas Cornelius, Frank Sill, Dirk Timmermann

8th – 10th October 2007

12. SYMPOSIUM MARITIME ELEKTROTECHNIK, ELEKTRONIK UND INFORMATIONSTECHNIK

Rostock, 9th October 2007 12. Symposium Maritime Elektrotechnik, Elektronik und Informationstechnik

- Introduction
 - System design
 - Technology issues
- Approach
 - Analytical models
 - Simulation
- Results
- Summary

Bus-based system design

- Shared communication medium
- Connected problems:
 - Memory-Bottleneck
 - Design-Productivity-Gap
 - Synchronous design

System design

Bus-based system design

- Shared communication medium
- Connected problems:
 - Memory-Bottleneck
 - Design-Productivity-Gap
 - Synchronous design
- Worsening the situation:
 - Chip-Size
 - Interconnects -
 - Integration density
 - Parameter variability
 - ... and many more

Network-on-Chip

Promising properties:

- Parallelism
- Modularity

Network-on-Chip

Promising properties:

- Parallelism
- Modularity

Level of abstraction:

Modules Logic-Gates Transistors Polygons

Change of Paradigms:

Computation

Resource

Router

Communication

Link

3D

Video

Audi

Memory

CPU

Crypto

Interface

I/O

RF

Bluetooth

Technology issues

Technology scenario 2010

- Technology node
- Chip size
- Transistor count
- Physical gate length
- Metal layers
- Frequency (global-local) 2-12 GHz
- Total wire length
 - For M1-M6, 33% usage

[ITRS, 2003 and 2005]

~2.2 km/cm²

45 nm

620 mm²

4424 Mio.

~20 nm

12-16

- Approximate size of a resource
 - Rent's rule
 - Reachable die area with clock signal
 - Acceptable power trade-off

<10 Ångström gate oxide thickness

<100 dopant atoms

Power density

Technology issues

Parameter variability

Parameter variability dramatically increasing

Related work

- Prototyping, Test-Chips
 - Star topology for multimedia applications [Lee, 2003]
 - 4x4 mesh network with traffic generators [Mullins, 2006]

- Parametrizable VHDL-model ported to FPGA [Zeferino, 2004]
- Emulation framework on an FPGA [Genko, 2005]
- High-level VHDL [Sigüenza, 2002]
- SystemC approach and design flow [Jalabert, 2004]
- Event-based C++ Simulator [Wiklund, 2004]

- Computation and time intensive
- Accurate results

Power equation

Analytical models

Simulator

Scenario

Simple example of 16 resources/IPs in a regular 4x4 mesh interconnected with

Power and throughput

Power and throughput

Results

Temperatur distribution influences

- Performance
- Power consumption
- → Reliability
- Dynamic power management
 - Avoid hot spots
 - Task mapping
 - Packet congestions
 - → DV/FS, Clock-gating ...

Application example for the temperature distribution of a 5x5 network

111111

Results

Reliability

- Permanent, single error
- Average number of working connections
- Cohesive connected system

Motivation for investigating

- Networks-on-Chip
- Power and reliability
- Combined approach for design space exploration
- Comparison of results to a reference bus
- Consideration of dynamic behavior and control

