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Distributed Selection of References for Localization

in Wireless Sensor Networks
Dominik Lieckfeldt, Jiaxi You and Dirk Timmermann

Abstract—The main purpose of wireless sensor networks is
to provide information about an area of interest. In order to
fulfill this task, physical parameters have to be measured by as
many sensors as possible to improve the knowledge on the sensed
area. In contrast, due to the resource-limited nature of sensor
networks, the number of actively participating nodes should be
kept to a minimum. This paper investigates the trade-off between
the two conflicting requirements with special focus on localization
of sensor nodes. A distributed algorithm to select subsets of
sensor nodes for localization is analyzed regarding the accuracy
of localization.

I. INTRODUCTION

This paper considers localization in Wireless Sensor Net-

works (WSNs) using lateration, which is the most widely

used approach in experimental and industrial localization

systems [1], [2], [3]. Distances between nodes are estimated

using Received Signal Strength (RSS) or Time of Arrival

(ToA). Typically, it is assumed that beacons broadcast their

absolute location information regularly during the first phase

of localization. The second phase of localization involves all

nodes with location information which form the superset of

reference nodes consisting of both beacons and unknowns with

estimated locations. In [4], [5], this approach is demonstrated

to enable localization of unknowns not being in the neighbor-

hood of at least 3 beacons (figure I). Because the number of

references typically exceeds the number of unknowns during

refinement, it is feasible to let the remaining unknowns request

location information of neighboring references rather than

having the references broadcast their location regularly.

From the information theoretic point of view, average ac-

curacy of localization increases with the number of references

used if their observations can be considered independent. On

the one hand, it is common to involve as many references

as possible to achieve maximum accuracy. On the other

hand, limited resources of WSNs, such as bandwidth and

energy capacity, suggest a more restrictive and selective use

of references.
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II. RELATED WORK

It has often been stated in the literature that relative lo-

cations of references and unknowns have strong impact on

the accuracy of localization for both fine- and coarse-grained

approaches. Therefore, best placement and optimal selection of

beacons in terms of accuracy of localization has been spotted

as an interesting field for investigations.

Since complexity of localization depends on the number of

references used, it is desirable to select those references first

which contribute most to high accuracy. In contrast, select-

ing a subset of references in order to optimize localization

accuracy has intensively been studied in the literature. In

[6], [7], [8], range measurements are weighted according to

their variance and distance or references are selected based

on the difference between distances and estimated locations

[4]. Others apply tests to detect outliers in order to exclude

them from calculations or just choose the nearest references

for estimation of location [9], [10]. For coarse-grained lo-

calization, it has been reported in [11] that choosing the

nearest three references increases localization accuracy when

estimating distances with the DV-Hop method. Furthermore, in

[12], localization errors are simulated at references to decide

where additional references have to be placed to decrease

errors efficiently. However, this leads to large computational

overhead on references. In [13], geometry of the situation

is considered. Here, the set of all references is divided into

groups of three references. The references of one group form

a triangle whose angles must meet a certain requirement for

this group to be selected for localization. Drawbacks of this

approach are high computational complexity as all possible

groups of references are considered and the need for global

knowledge to be available at references.

In [14], the authors suggest a distributed algorithm for

selecting subsets of references which effectively reduces com-

munication effort by excluding unsignificant nodes from par-

ticipating in the localization process and, thus, prolongs the

lifetime of WSNs. This paper extends the investigation of this

algorithm by considering energy consumption and impact on

accuracy of localization using a most likelihood estimator.

The remainder of this paper is organized as follows: Sec-

tion III introduces the scenario and nomenclature. Section IV

reviews the error model and the Cramer-Rao-Lower-Bound

on localization error which is the criteria used for selecting

subsets of references. In Section V the benefits of the approach

are investigated regarding energy and communication and con-

clusions for the total energy consumption are drawn. Finally,

Section VI reviews the algorithms used to select the subsets,

Section VI-A presents simulation results and in Section VII
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Figure 1. a) Iterative localization process. b) Distances used to calculate CRLB.

conclusions are drawn.

III. SCENARIO SET-UP AND VARIABLES

We consider random deployments of M sensor nodes where

two different types of nodes exist: mb beacon nodes with a

priori known locations, and mu unknowns to be localized.

In the following, we use ni to refer to a specific node. By

considering a WSN in a later state of its lifetime, it is justified

to assume that all unknowns in range of at least 3 beacon

nodes have obtained an estimate of their location. The class

of references is formed by all nodes with known locations

and, therefore, contains all beacon nodes and unknowns with

estimated locations. Consequently, in later states of the WSN,

one node desiring to estimate its location or to improve the

accuracy of its location estimate will have a relatively large

number of references to choose from. This situation motivates

the need for a resource-aware selection of the best subset of

references in terms of localization accuracy.

First, we define the set of unknowns U :=
{ni | i ∈ {1, 2, . . . , mu}}, the set of beacons

B := {ni | i ∈ {mu + 1, mu + 2, . . . , mu + mb}} and

the set of all nodes N := B ∪ U with ui ∈ U , bi ∈ B
referencing a specific unknown and beacon, respectively.

Nodes are capable of wireless communication and thereby can

estimate distances between communicating nodes. We assume

that nodes are synchronized and use time division multiple

access (TDMA). Assuming a 2D cartesian coordinate system,

the true locations of nodes are zi = (xi yi)
T with distances

di,j = ||zi − zj || between nodes ni and nj . Estimates of

parameters are indicated by a hat, e.g. estimates of distance are

d̂i,j . Since wireless communication has limited range rtx, we

further define the set of all beacons being within transmission

range of the unknown ui: Bi := {bj | di,j ≤ rtx}.

IV. ERROR OF LOCALIZATION

This Section states the error model which the further investi-

gations build upon and reviews the Cramer-Rao-Lower-Bound

(CRLB) on the error of localization which has been found by

Patwari et al. [15].

Naturally, we seek to find estimates of location with smallest

error |ei|, which is the distance between the true location and

the estimate:

ei =

(

xi − x̂i

yi − ŷi

)

(1)

The average variance of unbiased estimates over x- and y-

directions is:

σ̃2
i = E

{

(xi − x̂i)
2 + (yi − ŷi)

2
}

(2)

A. Error Model

Lateration based localization relies on distances between

reference nodes and unknowns. In order to determine its

location, one unknown has to determine its distance to at least

3 references assuming coordinates are in 2D. Typically, these

distances will be measured by use of radio signals, either by

Time of Arrival (ToA) or by Received Signal Strength (RSS).

Due to the nature of wireless communication, these metrics

exhibit errors which, eventually, lead to erroneous results when

used for localization. It has been shown in [15] that ToA and

RSS (in decibels) can be modeled by gaussian distributions

with sufficient accuracy for an office scenario. This approach

assumes a shadowing model of the wireless channel which

is characterized by obstacles randomly blocking the direct

line of sight between nodes. In the following the model is

shortly reviewed: Under the previously stated assumptions let

σ2
rss (σ2

toa) and P̄i,j (T̄i,j) denote the variance and mean of

the RSS (ToA) measurements for nodes ni and nj :

Pi,j ∝ N
(

P̄i,j , σ
2
rss

)

(3)

P̄i,j = P0 − 10np log10(di,j/d0)

Ti,j ∝ N
(

T̄i,j , σ
2
toa

)

(4)

T̄i,j = di,j/vprop

Where P0 is the RSS at a reference distance d0 and vprop is

the speed of propagation of radio waves.

B. Cramer-Rao-Lower-Bound on Localization Error

Based on the previous error model, a lower bound on the

variance of location estimates can be derived employing the

CRLB. Given a random variable x which follows an univariate

distribution and an estimator T (x) for the parameter ϑ of

this distribution, the lower bound on the variance of estimates

V ar {T (x)} is given by:

V ar {T (x)} ≥

(

∂
∂ϑE {T (x)}

)2

I(ϑ)
(5)
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Where I(ϑ) denotes the Fisher-Information-Matrix. For the

case of ToA and RSS1 there exist solutions for the CRLB

which will be reviewed briefly in the following. Without loss

of generality we assume that node n1 is an unknown trying

to estimate its location and nodes {2, 3, . . . , M} are beacons.

In this case, σ2
1,rss (σ2

1,toa) is the lower bound on the variance

of the location estimates of n1 for RSS (ToA):

σ2
1,rss =

1

a

∑M
i=2 d−2

1,i

∑M−1
i=2

∑M
j=i+1

(

d1⊥i,jdi,j

d2

1,i
d2

1,j

)2 (6)

a =

(

10np

σdb ln 10

)2

σ2
1,toa = v2

propσ
2
toa(M − 1)





M−1
∑

i=2

M
∑

j=i+1

(

d1⊥i,jdi,j

d1,id1,j

)2




−1

(7)

It is noted that σ2
1,rss ∝ σ2

rss/n2
p and σ2

1,toa ∝ σ2
toav

2
prop.

Therefore, parameters for simulations were chosen to yield

σ2
rss/n2

p = 1 and σ2
toav

2
prop = 1.

Since the variance of estimates is connected to the mean

error, the lower bound on variance is likewise an upper bound

on accuracy. It is noted that the resulting error ||e1|| of

estimates relies on both bias and variance. However, since

bias can sometimes not be avoided completely, reducing

variance appears as a proper approach to increase accuracy.

Consequently, the algorithm presented in [14] uses this bound

as criteria to select subsets of references for localization.

C. Maximum Likelihood Estimator of Location

The following estimators are used for the performance

evaluation in Section VI-A for RSS and ToA:

z
(rss)
1 = argmin

{z1}

M
∑

j=2

(

ln
d̂2
1,j

d2
1,j

)2

(8)

z
(toa)
1 = argmin

{z1}

M
∑

j=2

(

d̂1,j − d1,j

)2

(9)

Where d̂i,j are estimated distances and d1,j = ||z1 − zj ||.

V. BENEFITS OF APPROACH

As stated before, the more references are included the

more accurately can the location of an unknown be estimated.

This is intuitively understood since more information can be

used for localization. But why does limiting the number of

reference nodes has any benefit? Since WSN are resource-

limited, only considering accuracy of localization does not

reflect sufficiently the impact of localization since resources

have to be spend for it which are not available for other tasks.

Consequently, the efficiency has to be used as performance

metric to analyze and compare algorithms for localization in

WSNs. In this context, selecting the most important references

is a suitable means to increase the efficiency of localization.

1In addition, in [2] the authors derive CRLB for hybrid RSS/ToA localiza-
tion.

VI. ALGORITHMS AND PERFORMANCE EVALUATION

In this Section, the algorithms investigated are reviewed and

results from simulations using Matlab are presented.

The algorithm, called Reference Selection using Local

CRLB (RS-LC), is based on Cramer-Rao-Lower-Bound

(CRLB). The CRLB is used to quantify the potential increase

of localization accuracy locally when adding references to

the subset used for localization. RS-LC is compared with the

conventional methods to select references which are based on

distances only. For the simulations, the conventional methods

are called Reference Selection using Local Distances (RS-LD)

and Reference Selection using Global Distances (RS-GD).

Table I lists all algorithms.

Starting point for all algorithms is the request for local-

ization, which is broadcast by the unknown and allows its

recipients to estimate their distance to the unknown either by

using RSS or ToA. The considered algorithms can be divided

into Global and Local algorithms indicating the degree of

knowledge that is required for selecting. The global algorithm,

RS-GD, requires that all references share the same knowledge.

Hence, they are able to access the estimates of distance

of other references. Therefore, RS-GD is likely to require

more communication. In contrast, references running a local

algorithm, namely RS-LC or RS-LD, can only access their

own knowledge, i.e. their estimate of distance to the request-

ing unknown. In addition, RS-LC also utilizes information

contained in the responses of other reference nodes, which

are:

• estimated distance to requesting unknown,

• location of originator.

This way, the communication effort during RS-LC is kept as

small as needed to enable localization of the unknown. The

key to the distribution of the local algorithms is to assign prob-

abilities of response based on the information being available

at one reference node. For analyzis a Time Division Multiple

Access (TDMA) scheme is assumed to avoid interference. This

assumption can easily be relaxed to account for Carrier Sense

Multiple Access schemes by substituting probabilities for back

off times.

Algorithm Degree of Knowledge Metric used

RS-GD global Distance
RS-LD local Distance
RS-LC local Distance, CRLB
RS-LC-CR local Distance, CRLB, Circle-Rule

Table I
OVERVIEW OF ALGORITHMS.

In some scenarios, references might know the location

(estimates) of their adjacent reference nodes, for example,

as a result of the first phase of localization. In this case,

we propose to apply the so called Circle-Rule during the

selection process, which, basically, allows reference nodes to

respond immediately if they have no other references within

the estimated distance to the requesting node (figure 2). The

algorithm RS-LC-CR uses this rule.
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Figure 3. Simulation results: a) Lateration based on RSS. b) Lateration based on ToA.
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Figure 4. Power-Error-Product: a) Lateration based on RSS. b) Lateration based on ToA.
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Figure 2. Circle Rule applies in a) but not in b); Tx range: rtx, Estimated
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The algorithms with local knowledge are described in

table II. RS-LC is the same as RS-LC-CR if line 4 is left

out during execution.

A. Simulation Results

We conducted simulations using Matlab to compare the per-

formance of the algorithms in terms of MSE with the following

parameters: number of nodes=169, number of unknowns=1,

transmission range rtx = 150 m. Impact of borders is avoided

by deploying all beacons in an area of size 3rtx × 3rtx and

placing the unknown randomly in the middle sector of size

rtx×rtx. Medium access is via TDMA. The average number of

beacons within full transmission range of the unknown is 60.

In order to avoid the hidden terminal problem, it is assumed

that the requesting node broadcasts with half the transmission

range while responding nodes use the full transmission range.

As a result, 14 references receive the request for localization

of the unknown. Distances are estimated using RSS or ToA,

whereby a log-normal shadowing model is used for RSS and

ToA is assumed to follow a Gaussian Distribution as stated

in Section IV. To allow for comparison, the parameters of

distributions have been chosen to yield σ2
rss/n2

p = 1 and

σ2
toav

2
prop = 1. Results are averaged over 500 independent de-
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Table II
ALGORITHMS OF CLASS LOCAL-KNOWLEDGE. CODE IS EXECUTED AT bi .

RS-LC-CR

1 procedure P r o c e s s L o c a l i z a t i o n R e q u e s t ( d̂1,i ,

{d̂i,j|bj ∈ B1})

2 i f no o t h e r beacon w i t h i n d i s t a n c e d̂1,i to

unknown then

3 % a s s i g n p r o b a b i l i t y o f r e s p o n d i n g

4 Pi ← 1
5 e l s e

6 % c a l c u l a t e p r o b a b i l i t y o f r e s p o n d i n g

7 Pi ← 1− (d̂1,i/rtx)2

8 end i f

9 Hi ← ∅
10 f o r each tdma c y c l e

11 % update s e t o f beacons which have

r e s ponded

12 Hi ← Hi∪{beacons bj whose r e s p o n s e has been

o v e r h e a r d by bi}
13 i f card(Hi) = 1 then

14 i f σ̃i (Hi ∪ {bi}) > rtx

15 % q u i t c u r r e n t i t e r a t i o n w i t h o u t

r e s p o n d i n g and t r y aga in n e x t tdma

c y c l e

16 break

17 end i f

18 e l s e i f card(Hi) ≥ 2 then

19 % update p r o b a b i l i t y o f r e s p o n d i n g

20 Pi ← |1− σ̃i (Hi) /σ̃i (Hi ∪ {bi})|
21 end i f

22 i f randomNumber < Pi then

23 % b r o a d c a s t r e s p o n s e

24 r e s p o n d ( ownAddress , d̂1,i ,zi )

25 % e x i t pr ocedur e

26 re turn

27 end i f

28 end f o r

29 end procedure

RS-LD

30 procedure P r o c e s s L o c a l i z a t i o n R e q u e s t ( d̂1,i )

31 % c a l c u l a t e p r o b a b i l i t y o f r e s p o n d i n g

32 Pi ← 1− (d̂1,i/rtx)2

33 f o r each tdma c y c l e

34 i f randomNumber < Pi then

35 % b r o a d c a s t r e s p o n s e

36 r e s p o n d ( ownAddress ,zi )

37 % e x i t pr ocedur e

38 re turn

39 end i f

40 end f o r

41 end procedure

ployments where for each deployment the location is estimated

using the ML estimator of Section IV and the corresponding

euclidean errors ||e1|| are calculated (1). Results are depicted

in figure 3. For the evaluation of the PEP, parameters of the

popular mica2 mote have been used, i.e. Itx = 27 mA in

transmission and Irx = 10 mA in receiving mode. Energy

consumption ∆E has been normalized to source voltage and

duration of one TDMA slot since these parameters are the

same for all nodes and all algorithms [16]. Consequently, the

normalized PEP has dimension of current.

Figure 3 shows the error of location ||e1|| for the considered

algorithms on the vertical axis and the number of beacons

selected on the horizontal axis for both RSS. The algorithms

can clearly be separated according to the achieved error.

Among the algorithms with local knowledge, namely RS-

LC-CR, RS-LC and RS-LD, RS-LC-CR performs best as

it yields the smallest error of location for all sizes of the

subset. As expected, the algorithms which are allowed to use

global knowledge, RS-GD and RS-GC, achieve the smallest

overall error. However, this is in exchange with higher energy

consumption and communication effort. Figure 4 depicts the

PEP for the algorithms with local knowledge and, as a

reference, the PEP when all available beacons are used for

localization which is denoted as Conv. Regarding PEP, RS-LC-

CR performs best for subset size up to 4. For larger subsets,

RS-LD achieves the smallest PEP and therefore the best ratio

between error of localization and energy consumption. This is

caused by the rapid convergence of the selection using RS-LD

which, on average, completes the selection of a subset with 10

beacons after 21 TDMA slots. The rise of the PEP for RS-LC-

CR for subsets larger than 5 is caused by the slow convergence

of the algorithm. Here, 283 TDMA slots are needed on average

to complete the selection of a subset with 10 beacons. The

reason for this is that RS-LC-CR achieves a significantly lower

average error than RS-LD for smaller subsets and, therefore,

adding further beacons to the subset does not, on average,

increase the achievable accuracy as much as for RS-LD.

Figure 3 shows the error of location ||e1|| for ToA. The

differences between the performance of the algorithms are

relatively small compared with RSS whereby RS-GC achieves

the smallest overall error and RS-LC-CR the smallest error

among the algorithms with local knowledge. It is noted that

the algorithms relying on distances only, namely RS-GD

and RS-LD, achieve the largest error of localization. This is

caused by the minor impact of distance between unknown and

references on location estimates when ToA is used. However,

when considering the efficiency using PEP (figure 4), RS-LD

performs most efficient among all algorithms. This is again

caused by the faster convergence of RS-LD compared with

the other algorithms as explained for RSS.

VII. CONCLUSION

Distributed algorithms for selecting subsets of references for

localization have been analyzed regarding error of location es-

timates, energy consumption and communication effort. Three

algorithms, namely RS-GC, RS-LC and RS-LC-CR, use the

Cramer-Rao-Lower-Bound on localization error for selecting

and two algorithms, namely RS-GD and RS-LD, follow the

conventional approach and rely on distances. For the case

that reference nodes known the locations of adjacent reference

nodes, RS-LC-CR is able to achieve the highest and RS-LD

the lowest accuracy of location estimates if local knowledge is

available only. However, taking into account the energy spend

for localization using the Power-Error-Product reveals that RS-

LD yields the best ratio between error and energy consumption

due to its most rapidly convergence. However, all algorithms

achieve a higher efficiency of localization compared with

the conventional approach to use all available references for

subsets of size up to 8 references when compared over equal

periods of time.
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