
An Integrated Hardware Solution for MAC Address Translation, MPLS, and
Traffic Management in Access Networks

Harald Widiger and Stephan Kubisch and Dirk Timmermann
Institute of Applied Microelectronics and Computer Engineering

University of Rostock, 18051 Rostock, Germany
Telephone: ++49 (0)381 498 -3628

Email: {harald.widiger;stephan.kubisch;dirk.timmermann}@uni-rostock.de

Thomas Bahls
Siemens AG Communications
17489 Greifswald, Germany

Email: thomas.bahls@siemens.com

Abstract

Today, an increasing number of customers subscribes for
a high bandwidth internet access. But not only communica-
tion speed is demanded. Quality-of-service moves more and
more into the customers’ focus. Both Carriers and Inter-
net Service Providers (ISPs) have increasing requirements
derived from new services they want to offer to their cus-
tomers. We present a new hardware solution is presented,
which can satisfy many of these upcoming demands. This
solution is highly flexible and can be adapted to various
applications. The MAC Address Translation - MPLS User
Network Interface (MATMUNI) provides the functionality
of MAC Address Translation (MAT), Multi Protocol Label
Switching - User Network Interface (MPLS-UNI), and a
Traffic Manager (TM). This way, a module implemented on
a single FPGA offers a wide range of functionality in an ac-
cess network for low costs and high flexibility. The selection
of an FPGA as implementation target offers the possibility
to adapt to future demands towards functionality. Moreover,
the all functional elements work with wire speed. Only a
negligible delay is inserted into the data path.

1 Introduction

Today, more and more customers subscribe for a high
bandwidth internet access. But not only speed is demanded.
Reliability, availability, quality-of service (QoS), and secu-
rity move more and more into the customers focus [1]. As
illustrated in Figure 1, the architecture of current access net-
works consists of various aggregation levels. The main ag-

gregation points from the customers’ side of the access net-
work supporting Gbit-Ethernet are the linecards, the cen-
tral nodes, and broadband access servers. Both central node
and broadband access server support multiple Gbit-Ethernet
streams and fiber optics. Every device in the data path has
to analyze and process frame parameters such as source and
destination addresses, QoS information, protocol types, and
checksums to direct the data streams through the access net-
work.

Gbit 
Ethernet

Multiple 
Gbit 

Ethernet

DSL/
Ethernet

Customers

Linecards

Central 
Node

Broadband
Access
Servers

Fiber 
Optics

ISP

Figure 1. Current Access Network Architec-
ture

Actually, home users favor the usage of Ethernet based
DSL with intermediate bandwidths while business cus-
tomers require connections with highest bandwidths and
QoS. They even connect their own Local Area Network
(LAN) directly to the carriers access network. Even the
Plain Old Telephone System (POTS) may be integrated
through Voice over IP (VoIP) into the access network. Thus,
in the future, access networks have to deal not with a sin-
gle customer connected to one line of the linecard. They
must aggregate whole LANs at the linecards, as it is illus-



trated in Figure 2. This results in a huge number of users
connected to the access network. Due to this high num-
ber of users, managing of address tables within the nodes
and core switches becomes a challenging task. So called
MAC address table explosions can occur [2]. Furthermore,
as users are even able to manipulate their own addresses,
which can result in duplicated addresses leading to severe
network problems.

In addition, ISPs are selling more bandwidth than exists
in assumption that not all customers are online at the same
time using their committed bandwidth. This is commonly
known as oversubscription. Thus, the customers share a
common reservoir of bandwidth. But it might happen that
during peak hours the customers claim what they paid for,
because ”Internet users who pay a fixed fee have no incen-
tive to limit their use of the network.” [3]. In periods of
decreased demand, valuable customers might be allowed to
cause more traffic than they have subscribed for. Besides,
business customers should be of higher priority than home
users.

Moreover, customers demand QoS, diverse services, and
traffic differentiation. In order to fulfill these various de-
mands, it is necessary to enrich the different frames with
additional information. The enrichment must take place
within the access network, as data such as port information
is available here only, but it is required at other locations of
the network. The location of aggregation and service cre-
ation are different.

Software solutions targeting these problems can lead to
an immense workload in the CPUs of the central nodes.
That may prevent them from executing their primary tasks
such as routing or switching. This offers vulnerabilities in
the access architecture. Without flexible, resource aware,
and economical management solutions, this is going to be
a tremendous problem in the future. Obvious solutions uti-
lizing Network Processors are too expensive and do not of-
fer the performance that is required to be utilized in an ac-
cess network environment. Other inexpensive hardware so-
lutions cannot offer the functionality that is requested.

To cope with increasing demands for bandwidth and QoS
and with scalability issues, the new solution, we propose in
this paper, helps to manage the growing internet traffic in an
elegant, flexible, cost-effective, and high-performance way.

Following, Sections 2 and 3 briefly introduce our hard-
ware solutions for a MAC Address Translation (MAT) mod-
ule, a Traffic Manager module, and a MPLS-UNI module.
Section 4 presents the integration of all three solutions in
one hardware module. Section 5 presents the advantages of
our solutions and concludes this paper.

Gbit 
Ethernet

DSL/
Ethernet

Linecards

Central 
Node

Figure 2. Customer Connections to Access
Networks

2 Functional Modules

To cope with the aforementioned demands, three inde-
pendent functional modules have been developed: a module
for MAC Address Translation [4], a module for creation of
an MPLS-UNI [5], and a module for Traffic Management
[4]. The functionality is described in following subsections.

2.1 MAC Address Translation Module

MAT is a technique similar to NAT (Network Address
Translation). But it is applied on layer 2 addresses instead
of layer 3 addresses. MAT replaces the Customer MAC ad-
dress (CMAC) of a data frame with a Provider MAC ad-
dress (PMAC) and vice versa. In the upstream data path, the
source MAC address is replaced, while in downstream, the
destination MAC address is replaced. The replacement is
performed based on information within the headers of each
frame referred to as key. As sketched out in Figure 3, the
key is extracted from each customer frame in the upstream
data path. This key is processed and a truly distinct PMAC
is returned to replace the CMAC. In the downstream data
path the PMAC is replaced by the original CMAC which
is stored in the modules address tables. Again, a key is
processed to lookup the appropriate CMAC. Different re-
lations between CMACs and a specific PMAC like 1:1 or
n:1 are possible. That reduces the workload within the core
network and addresses different aspects such as security
(1:1) or scalability (n:1). The MAT functionality is placed
behind the central nodes in the access network (see Fig-
ure 1). Therefore, the number of corresponding connected
linecards and ports is limited. Thus, large address tables and
address table explosions are eliminated.

Different MAC address encapsulation schemes exist. All
schemes relief the workload of the core switches, because



frame_out

frame_out

key PMAC

logic & address tables

CMAC

upstream

downstream

key

frame_in

frame_in

Customer Provider

Figure 3. MAC Address Translation

switching decisions are based on the PMACs. MAT has
similarities with MAC-in-MAC encapsulation (MiM) [6]
and MAC address stacking (MAS) [2]. The difference is the
replacement of the addresses instead of adding new header
fields to the frame. Such becomes possible through sophis-
ticated classification lookups. MiM adds a complete MAC
header and MAS adds at least 12 Bytes (destination and
source PMAC) which leads to larger frames, maybe exceed-
ing the maximum frame size, and thereby leads to additional
delays. Moreover, MAT as used here is feasible to be inte-
grated in every Ethernet based network. It does not demand
any extensions to existing switching hardware. It is fully
transparent and conforms to the IEEE 802.3 standard.

2.2 Traffic Manager Module

The Traffic Manager module (TM) targets the problem
of managing excessive load in the core network. In times
of extremely heavy traffic, frames within the data path have
to be discarded to resolve congestions in the network. It is
desired not to discard frames randomly but to do so in a fair
way. For this purpose, the TM module is used. The TMs
functionality bases in priciple on the three color markers
described in [7] and [8].

The TM is able to meter the traffic of each customer
connected to the access network. Dependent on the actual
data rates and two stored values, the committed information
rate (CIR), and the burst information rate (BIR), the module
marks every frame with colors ”green”, ”yellow” or ”red”.
The mechanism works as follows: CIR and BIR represent
the number of bytes the customer is allowed to transfer in
a certain time. Two counters are reset to the CIR and BIR
value if that time runs out. In the metering process, the
length of each frame is subtracted from the counter values.
Frames are marked green, if the customer does not exceed
his CIR, meaning the corresponding counter is greater than
zero. If he does and stays below his BIR, the frames are

marked yellow. Otherwise, the frames are marked red.
With this color information coded into the frames, adja-

cent systems are able to discard red frames first. All yellow
frames would be discarded next to resolve congestions be-
fore a green frame would need to be removed. This way, the
green frames of all users are the last to be deleted assuring
the CIR for all users as long as possible.

The color information can be coded into different parts
of the frame. If the frames are MPLS labeled, the EXP-
field of the label is used for the coding. Alternatively, the
color can be coded into the TOS-field in the IP-header of
a frame containing an IP packet. A third possibility is the
utilization of the .1p Bits. The TM can operate both in up-
and downstream direction. The module extracts a key from

frame_out

Key/Size Color
Info

logic & address tables

upstream
frame_in

Customer Provider

Figure 4. Traffic Management

the headers of each incoming data frame. The key identifies
the customer. It can consist of different fields as already
listed for the MATs key in Section II. The color information
corresponding to the key is searched in a memory connected
to the module. Depending on the retrieved information, the
frame is colored. Furthermore, the color information in the
memory is updated to perform the metering.

2.3 MPLS-UNI

As mentioned in Section I, it is needed to differentiate
traffic in access networks, which is acomplishable by in-
serting information into every frame. To transport that in-
formation within the frames, MPLS label stacks should be
used to carry all desired information.

MPLS is an encapsulation scheme. In an MPLS network,
a label is assigned to each incoming packet. Packets are for-
warded along a label switched path (LSP), where each label
switched router (LSR) makes forwarding decisions based
on the content of the label. But instead of using MPLS for
switching and routing, it is intended to convey the afore-
mentioned information in a standards-compliant and inter
operable way. Therefore, no label edge router (LER) im-
plementing the entire label distribution protocol (LDP) is
required. The reduced functionality is realized with a sim-
plified and cost-effective hardware solution as proposed in
this paper. The modules’ purpose is to add an MPLS la-



MPLS-
Uni

Ethernetframe MPLS-Frame

MPLS-FrameEthernetframe

Customer Provider

Figure 5. MPLS Labeling

bel stack to all incoming frames in upstream direction and
to forward them to the providers’ core networks. In down-
stream direction, the label stacks of all incoming frames are
stripped off as shown in Figure 5. For setting up the frames
with an MPLS label stack, the labeling scheme proposed by
Martini et al. in [9] is used to conform to the MPLS hard-
ware within the core network. This frame structure is given
in Figure 6. Here, the frames are completely encapsulated.
A new Ethernet header together with the created MPLS la-
bel stack is added in front of the original frame. The CRC
checksum at the end of the frame is replaced by a new CRC
value calculated over the whole new frame. The MPLS la-

Client data +
Pad

Type Length
Source Address

Destination Address
6 Byte
2 Byte

46 – 1500 
Byte

6 Byte

Type Length (MPLS)
Source Address

Destination Address
6 Byte
2 Byte

6 Byte

MPLS Label Stack 8 Byte

FCS 4 Byte

Client data +
Pad

Type Length
Source Address

Destination Address

FCS4 Byte

6 Byte
2 Byte

46 – 1500 
Byte

6 Byte

Customer Side Provider Side

Figure 6. Frame Structures

bel stack consists of two different labels as pointed out in
Figure 7. The values of both labels depend on the infor-
mation corresponding to the key derived from the received
frame. The inner label usually describes the virtual channel
through the MPLS network. The outer label describes the
actual path the frame has to take when passing the network
to the corresponding egress point. However, for a certain
application, at least 40 bits are available. Thus, a huge num-
ber of different services can be distinguished. VoIP data for
example might use a much faster route than standard inter-
net traffic. Even if the 40 bits should not suffice, more labels
can be added to the stack.

In the following section the hardware architecture of our
functional modules is described.

Tunnel Label

TTL
T Label

Tunnel Label
BEXP

VC Label

TTL
VC Label

VC Label
BEXP Label 0

Label 1

Figure 7. Added Label Stack

3 Hardware Architecture

All functional modules are written in VHDL (Very high
speed integrated circuit Hardware Description Language).
A reconfigurable silicon device will be used for hardware
implementation. Thus, all modules are able to perform at
wire speed. The FPGA is to be inserted between the central
nodes and the broadband access servers in an access net-
work (Figure 8). All modules base on the same principle

Gbit 
Ethernet

Multiple Gbit 
Ethernet

Linecards

Central 
Node

Broadband
Access
ServersMAT

TM
MPLS-UNI

Figure 8. Access Network with MATMUNI

architecture. A block diagram of the core functionality is
shown in Figure 9.

According to the constraints in actual access network en-
vironments, a throughput of four Gbit per second (Gbps) is
demanded, reaching the hardware modules via four parallel
Gbit Ethernet connections. That is why the data path has to
be implemented as four parallel paths as well. Both in up-
and downstream direction, a submodule extracts a key from
the headers of each incoming frame and stores the frame
in a buffer. The key identifies a customer, a group of cus-
tomers, or a flow. Possible fields the key can consist of are
source and destination MAC address, VLAN tags, ether-
type, source and destination IP address, and the DSCP field
in the IP header. Any combination of these fields can be
configured. The configuration is done during synthesis to
implement the desired functionality as efficient as possible.
This way, the key parser differs in size depending on the de-
sired key. In the minimal configuration, when the key parser
contains only the byte of the DSCP field in the IP header, the
implementation requires 336 slices. Parsing all seven pos-



Memory Arbiter

Memory CPU
Interface

Key Parser /
Framebuffer

Execution
Unit

FramebufferFramebufferKey Parser /
Framebuffer

Execution
Unit

Figure 9. Architecture of the Functional Mod-
ules

sible fields requires 720 slices. In this paper, all presented
results regarding implementation and speed refer to a Vir-
tex4 V4FX20 FPGA with speed grade 10. However, the
target device will be a Xilinx Virtex4 XCV4FX40 FPGA,
because it provides sufficient resources to implement four
Gbit channels and to extend the MATMUNI with additional
functionality.

While the data frame is stored in the buffer, the extracted
key is sent to a memory where the information referring to
the key is stored. There are four key parsers in both up- and
downstream direction. Thus, eight independent keys may
request access to the memory at the same time. For that
reason a memory arbiter (Figure 10) is required to schedule
all memory requests. The memory arbiter decides, which of
the competing keys gets access to the memory to search for
the corresponding entry. This decision is made by applying
the Least Laxity First (LLF) algorithm. The LLF, usually
used for process scheduling in operating systems, assigns
the memory access to the key with the smallest slack. In
process scheduling, the smallest slack is computed as differ-
ence between two parameters of the process: the deadline
to meet and the computation time required. In case of two
equal slack values, the process with the smallest deadline is
scheduled. In our application, the deadline derives from the
size of the currently unused part of the frame buffer. The
computation time derives from the number of frames that
are already stored. Both deadline and computation time
are presented as four bit values along with the key to the
memory arbiter. The key with the smallest slack gets access
to the memory. We considered using the Enhanced LLF
(ELLF) algorithm as presented in [10]. ELLF enhances
the LLF in the way that thrashing, i.e., unnecessary task

switches, is avoided. This feature has no use in our applica-
tion. In contrary to task switching in operating systems, no
costs arise from changing the key parser unnecessarily.

LLF
Sheduler

Key 
Mod 0Deadline

Comp
Time

Key

Slack 0

Key 
Mod 7Deadline

Comp
Time

Key

Slack 7

Memory
Arbitration

Key 0

Key 7

Key ID

Key, ID

Multiplexer

Mem Data, ID

Functionality 0

Functionality 7

Memory

Figure 10. Architecture of the Memory Arbiter

Any frame arriving via the four Gbit Ethernet links from
any side must be classified. Thus, the possible number of
memory lookups that can be performed in a given time is
the bottleneck of the whole system. In order to decrease
the number of memory lookups needed and therefore to in-
crease lookup speed, all keys are stored in a sorted mem-
ory. This way, a binary search can be performed to find
the information which corresponds to a key. This reduces
the required number of memory accesses to a maximum of
log2(N) with N being the number of keys in the memory.
The embedded MPLS architecture in [11] needs a linear
search time, which is not sufficient when searching for in-
formation with a rate of incoming frames of 4 Gbps. Sorted
memory entries of course complicate updates on the mem-
ory. Time consumption for insert and delete operations is
increased, as after all operations the correct sorted structure
of entries must remain. Inserting a new entry means finding
the correct position and relocating all greater entries to the
next higher address. Thus, insertion and deletion requires
a maximum of N + log2(N) memory accesses. However,
these extra memory accesses can be invested. Insertions
and deletions are usually only required if customers or net-
works connected to the access network change. Compared
to normal search accesses to the memory, this insertions and
deletions occur only very seldom.

When the information corresponding to the key is found,
the functional module transfers the information to the exe-
cution unit. Then, the frame buffer is read out and the ex-
ecution unit modifies the frame according to the modules’
purpose. After its modification, the frame leaves the mod-
ule either in direction to the core network or to the cus-
tomer’s edge. There are architectural elements in the func-



tional module that are not pictured to keep track of the main
functionality. Those elements have the purpose to configure
the module and to transfer data from the data path to the
CPU.

All three functional modules follow the above described
architecture. However, the execution units and some parts
of the other submodules differ slightly. The differences are
detailed in the following subsections.

3.1 Traffic Manager

In the TM module (Figure 11), updates on the memories’
content have to be performed regularily. Furthermore need
the counter values for the green and the yellow counter to be
updated after a frame has been color marked. That means,

Memory Arbiter

Memory 
with cyclic 
Updates

CPU
Interface

Key Parser /
Framebuffer Upstream TM

FramebufferFramebufferKey Parser /
Framebuffer

Downstream 
TM

Figure 11. Traffic Manager Architecture

in addition to the key parsers, all execution units request
access to the memory, too. This results in sixteen elements
requesting access to the memory. In order to secure data
integrity of the memory entries, counter updates must be
executed with a higher priority than key lookups.

This way, it can be assured that counter information
is updated before it is accessed again for a next lookup.
Thus, CPU accesses to the memory have the highest pri-
ority, counter updates have a middle priority, and requests
for key lookups have the lowest priority. Counter updates
do not need to be scheduled in a special manner, as the next
frame computation can occur not until all update operations
have been finished. Thus, the implementation of a special
scheduler as for the key lookups is not necessary.

3.2 MPLS-UNI

As mentioned in Section II, in downstream direction the
MPLS-UNI has a very simple task. It unpacks all MPLS la-

beled frames arriving at the downstream ingress points. As

Memory Arbiter

Memory CPU
Interface

Key Parser /
Framebuffer

Upstream 
Functionality

FramebufferFramebufferKey Parser /
Framebuffer

Downstream 
Functionality

Figure 12. MPLS-UNI Architecture

the complete original frame is encapsulated by the MPLS
frame, no additional information is needed to rebuild the
original frame. The functional module strips off the Ether-
net header and the MPLS label stack from the front of the
frame. The truncated frame is sent to the customer’s side
of the module. In consequence, only the four key parsers
in upstream direction compete for memory accesses in the
MPLS-UNI module. The downstream key parsers do not
need memory access.

4 An Integrated Solution - MATMUNI

The aforementioned functional elements can be com-
bined to be used in a hardware that provides a broad set
of functions. The interfaces of the data path are standard-
ized and simple (Figure 13). It consists of an eight bit wide
data signal, a Start of Frame (SoF) signal, and an End of
Frame (EoF) signal. SoF indicates the first byte of a frame.
The last byte of the frame is indicated by EoF. The transfer
of a frame has to take place without interruption. This as-
sures highest flexibility and interchange ability between the
elements. Additional functional modules for further tasks
can easily be integrated into the data path. The only re-
quirement is that the interface conforms to the data flow,
which is described above. With this interface, a pipelined
data path providing much different functionality can easily
be implemented.

But due to the mentioned similarities in the architectures
of all three modules, an integrated solution was developed -
MATMUNI. Figure 14 shows the MATMUNI system with



Memory Arbiter

Memory CPU
Interface

Key Parser /
Framebuffer MAT UP

FramebufferFramebufferKey Parser /
FramebufferTM MAT Down

MPLS
UNI

MPLS
UNI

TM

Figure 14. Architecture of the MATMUNI

Fuctional Module
Data(7 downto 0)

Start of Frame (SoF)

End of Frame (EoF)

Data(7 downto 0)

SoF

EoF

Figure 13. Data Path

execution units for MAT, MPLS-UNI, and TM. Functional-
ities common to all modules (key parser with frame buffer,
memory arbiter) were chosen to be globally shared. Sharing
those elements enhances efficiency of the implementation.
The data parsers, e.g., require up to 2160 slices if imple-
mented independent from each other. When they are inte-
grated in one module just 720 slices are required at max-
imum. The union set of keys for all functional elements
in up- and downstream direction is parsed and sent to the
memory arbiter together. That means, merging the func-
tional elements does not lead to performance penalties. The
lookup can be done for all keys in parallel assuming inde-
pendent memory blocks for every functional module. In-
dependent memory blocks can be realized by using internal
Block RAMs (BRAMS) of the FPGA, which is one way to
implement the necessary memory. In case that the FPGAs
internal memory is not sufficient, an external DRAM Chip
must be used as memory device. This decision has great
influence on capacity, cost, and performance of the system.

4.1 Internal Block RAM

In case internal BRAMs are used, it is possible to sepa-
rate the memories of the different functional elements of the

MATMUNI from each other. This has the great advantage,
that all keys coming parallel from the upstream frame buffer
(MAT, MPLS, TM) can be computed in parallel by three
independent memories with search engines, too. Thus the
lookup performance equals the performance of three non
integrated, independent functional elements.

4.2 External DRAM

If external DRAM is to be used, there is no possibility
of parallel memory lookups. Both merged and independent
implementation solutions have to share the single existent
memory interface. The three upstream keys have to be com-
puted serially. One way of accelerating the memory lookups
is to use the features of double data rate (DDR) memories.
Due to transmitting two data words per clock cycle, DDR
memory provides more memory lookups per second than
internal BRAMs or standard DRAMs.

4.3 Implementation Results

As already mentioned, a first implementation was ac-
complished using a Xilinx Virtex 4 XCVFX20 FPGA. The
amount of reconfigurable resources needed for the design
considerably depends on the configuration of the MAT-
MUNI. The MATMUNI can be configured in different
ways. Firstly, all desired execution units (MAT, MPLS, TM
in up- and downstream direction) must be selected. Sec-
ondly, the structure of the keys of each functional module
must be defined. And thirdly, the number of Gbit chan-
nels used must be specified. These configurations can be
made by changing constant values in a configuration VHDL



Table 1. Implementation Results

Module Slices Speed (MHz)

min. max.

MAT 210 220

MPLS 220 160

TM 240 190

Memory Arbiter 282 1023 160

CPU Arbiter 600 320

Local Control Modules 160 180

Upstream Framebuffer 336 723 157

Downstream Framebuffer 336 723 157

MATMUNI 2300 4300 150

file. The complete functionality of the MATMUNI for one
Gbit channel was synthesized. Depending on the type of
the keys, the MATMUNI required 2300 slices when config-
ured with a minimal key size. Configuring a maximum key
size, the number of slices increased up to 4300. Addition-
ally, some negligible glue logic was needed to synchronise
incoming data into the MATMUNI. When the MATMUNI
is configured with a typical key setup for all functional el-
ements, it requires 3300 slices. With the same setup for
all functional elements implemented in the stand alone ver-
sion and connected to each other the hardware requirements
nearly doubled. In that case 6000 slices were required for
the implementation (MAT: 2100, MPLS-UNI: 1500, TM:
2400). Thus, the integrated solution saves nearly half of the
hardware resources for an implementation. The module op-
erated at a maximum speed of 150 MHz, although at least
125 MHz are sufficient to handle a data rate of 1Gbps per
channel.

5 Conclusion

The presented hardware module provides a flexible and
most of all cost-efficient solution in current and future ac-
cess networks. It contains the functionality for layer 2 ad-
dress translation, it expands MPLS networks into the ac-
cess area, and it manages excessive network loads to ensure
guaranteed QoS as long as possible. The module computes
the data streams with wire speed. Thus, nearly no addi-
tional delay in the data path is generated. At a speed of 125
MHz, it can handle data rates of 4 Gbps in up- and down-
stream direction. Compared to the single implementations
of all functionalities, the integrated solution provided by the
MATMUNI saves nearly 50% of the hardware costs. Due

to the fact that our solution is designed for reconfigurable
hardware, the functional spectrum can be broadened and
adapted to future tasks in the ever-changing and fast-living
networking world.

This work is done in cooperation with Siemens AG Com-
munications, Greifswald.

References

[1] R. Santitoro, “Metro Ethernet Services
- A Technical Overview,” white paper,
www.metroethernetforum.org, Tech. Rep., 2003.

[2] G. Chiruvolu, A. Ge, D. Elie-Dit-Cosaque, and M. Ali,
“Issues and Approaches on Extending Ethernet Be-
yond LANs,” IEEE Communications Magazine, pp.
80–86, March 2004.

[3] L. W. McKnight and J. Boroumand, “Pricing Internet
Services: Approaches and Challanges,” IEEE Com-
puter, pp. 128–129, February 2000.

[4] S. Kubisch, H. Widiger, D. Duchow, T. Bahls, and
D. Timmermann, “Wirespeed mac address transla-
tion and traffic management in access networks,” in
Proc. The World Telecommunications Congress 2006
(WTC06), May 2006.

[5] H. Widiger, S. Kubisch, D. Duchow, T. Bahls, and
D. Timmermann, “A simplified, cost-effective mpls la-
beling architecture for access networks,” in Proc. The
World Telecommunications Congress 2006 (WTC06),
May 2006.

[6] Nortel Networks, “Service Delivery Technologies for
Metro Ethernet Networks. White Paper,” 2003.

[7] J. Heinanen, “A Single Rate Three Color Marker. RFC
2697,” September 1999.

[8] J. Heinanen, “A Two Rate Three Color Marker. RFC
2698,” September 1999.

[9] L. Martint et al, “Encapsulation Methods for Transport
of Layer 2 Frames Over IP and MPLS Networks,” in-
ternet draft, February 2005.

[10] J. Hildebrandt, F. Golatowski, and D. Timmermann,
“Scheduling Coprocessor for Enhanced Least-Laxity-
First Scheduling in Hard Real-Time Systems,” 1999.

[11] R. Peterkin and D. Ionescu, “Embedded MPLS Archi-
tecture,” 19th IEEE IDPS, Tech. Rep., April 2005.


