
An Optimized WS-Eventing for Large-Scale
Networks

Jan Skodzik, Vlado Altmann, Peter Danielis, Moritz Koal, Dirk Timmermann
University of Rostock

Institute of Applied Microelectronics and Computer Engineering
18051 Rostock, Germany, Tel./Fax: +49 381 498-7284 / -1187251

Email: jan.skodzik@uni-rostock.de

Abstract—Web Services are becoming more and more relevant
also in the domain of embedded devices as they are becoming an
important aspect of the Internet of Things. Embedded devices,
especially in the field of automation, require real-time behavior.
The Devices Profile for Web Services defines WS-Standards for
embedded systems. The WS-Eventing is one of this standards
within DPWS and enables the distributions of events. However,
WS-Eventing has a scalability problem as in ad-hoc networks the
notification is transmitted sequential by an event source. Under
these circumstances, it is not suitable for large-scale networks
with a high amount of devices. Therefore, a new approach is
presented to solve this issue by acquiring helping devices. The
communication is only based on unicast IP communication and
thus is easy to integrate into automation infrastructures and
could be established over several subnets. This approach has
been investigated with an experimental setup and shows the
high scalability compared to the original notification mechanism.
Additionally, the real-time capability is given due to the chosen
platform and real-time operating system. Thus, the new approach
enables the idea of Internet of Things in automation scenarios.

I. INTRODUCTION

Web Services are an established way to offer services in
the modern connected world in an effective way due to the
decoupling of devices. As an enterprise solution or external
API, they are already established by many companies like
Amazon or Google [1] [2].

With the idea of the Internet of Things (IoT), the number
of devices in the network increases enormously. IoT also is
an important factor in the industry and therefore faces new
requirements like the need for real-time behavior [3]. This
also includes devices with limited resources, e.g., embedded
systems. With the 2006 initially released Devices Profile for
Web Services (DPWS) by Microsoft, these devices are also
able to communicate via a common standard and are easy to
integrate into the existing networks. DPWS, which became an
OASIS standard in 2009, is a compound of different standards
to be able to adapt the application to any needs of the costumers
[4]. An overview of the standards is given in Figure 1.

Typical WS standards are WS-Discovery and WS-Eventing,
which are the essential standards to perform operations [6],
[7].

WS-Discorvery is used to find services in an network and
is realized in two different modes - the managed-mode and
the ad-hoc mode. The ad-hoc mode is preferred as it has no
central instance, which represents a single point of failure

Application‐specific protocols

WS‐Discovery WS‐Eventing WS‐MetadataExchange

WS‐Security, WS‐Policy, WS‐Adressing

SOAP‐over‐UDP, SOAP, WSDL, XML Schema

UDP
HTTP

TCP

IPv4 / IPv6 / IP Multicast

Fig. 1. DPWS stack [5]

(SPoF). Every device acts autonomously while entering the
network. This also has a disadvantage related to the scalability
of searching for new devices. If a device searches for all
services of one type by a multicast request it gets all responses
within a specified time. Thus, this could lead to an immense
overload of the searching devices and therefore leads to the
discarding of responses. An approach is presented in [8] to
solve this issue in an ad-hoc network by using a DHT-based
discovery algorithm. This algorithm has a very good scalability
as it actively controls the responses of a search discovery
command and avoids the usage of multicast. The DHT-based
algorithm has been realized using Kad (an implementation
of Kademlia) as software basis. Furthermore, after finding
resources, the idea is to use the new discovery mechanism
for services. One of further applications could be an eventing
system, which would require the WS-Discovery to find event
sources. An eventing system based on a publish/subscribe
mechanisms offers a good opportunity to enable asynchronous
communication. Additionally, eventing allows a high grade of
decoupling of the devices, which could increase the scalability
and also enables the independent communication between
different devices [9].

A publish/subscribe system is also standardized in the WS-
Eventing and has a big disadvantage in terms of scalability
as only one device has to send the event notification to all
subscribed nodes. This shows a bad scalability and is not suited
for real-time scenarios as the event notifications will be sent
much later with an increasing number of devices. In this paper,
a new approach is presented to solve this issue and to create an



eventing system, which is suitable for large-scale scenarios as
it has a better scalability than the original eventing algorithm
described in the WS-Eventing standard. Briefly summarized
the main contributions of this paper are the following:

• An approach for an optimized eventing system.
• A prototype implementation of the suggested approach.
• Measurement results for experimental setup.
• Comparison with the standard WS-Eventing.
The remainder of this paper is organized as follows: Section

II contains a comparison of the proposed approach with related
work. Section III gives a short overview of the WS-Eventing
standard. Different optimizations including a new scalable
notification algorithm are presented in Section IV.

In Section V, a prototype is presented with measurements
results from a prototype setup realizing the original notification
and optimized notification algorithm. The paper concludes in
Section VI.

II. RELATED WORK

There are many approaches available for realizing a pub-
lish/subscribe system for eventing [9]. We are focusing on the
well supported and standardized WS-Eventing and list relevant
work, which focuses on improving WS-Eventing especially in
terms of scalability and reliability. These aspects are essential
for the deployment in large-scale networks with real-time
requirements like automation scenarios.

In [10], WS-Eventing and Java Message Service (JMS)
are presented as a possibility for a notification system in
automation environments. The Java-based JMS introduces a
more complex implementation and overhead to the system.
Additionally, the hierarchical/centralized structures of the JMS-
based publish/subscribe system contradicts the idea of an ad-hoc
network as a required message broker or application server
results in a SPoF for the system. WS-Eventing as an alternative
is criticized due to its low scalabilty as one event source
must notify many event sinks in the worst case. Also, it is
mentioned that WS-Eventing as part of DPWS allows for
an easy integration due to its standardization and offers a
good insight due to its lower complexity. Additionally, no
indications of device performance in this environment are
given to handle the suggested approach. The authors also
argue against the usage of shared communication channels
but prefer proprietary protocols on the lower device levels.
However, Industrial Ethernet uses a shared medium and to
use proprietary protocols means to waive the total horizontal
and vertical integration of an automation system from the field
level up to company level [11].

The issue of a bad scalability of WS-Eventing is also
considered in [12]. As a solution, a UDP-based multicast is
presented. However, this results in the disadvantage that also
router and switches must support multicasts, which could be
hard to guarantee over a big IP-based network. Additionally,
to the account of reliability of the notification, responses are
renounced as the event source will be overstrained if too many
event sinks answered. Unfortunately, prototypical performance
results are not presented. We are not using any multicast as

Subscription 
manager

Event sourceEvent sink Subscribe

Notification

Renew

GetStatus

SubscriptionEnd

Unsubcribe

Fig. 2. WS-Eventing operations

our approach is based on simple unicast messages. Therefore,
the solution can be used unlimited as long as IP and UDP
are supported. Additionally, we support a higher reliability as
every notification will be confirmed by a response without
overstraining the event source.

In [13] and [14], Huang et al. present WS-Messenger to
achieve a better scalability of the notification distribution. In
terms of performance, they can beat a original WS-Notification
system but their system bases on a centralized infrastructure by
using a JMS broker. Performance measurement also only show
linear scalability, which is not enough for future challenges
with a high amount of devices. Also, there is no statement
about the usage in scenarios with embedded devices not to
mention environments with real-time requirements.

In [15], optimizations based on the WS-Messenger project
are proposed to directly increase the scalability. Event con-
sumers are requested to assume jobs with message queues
containing contacts to be notified. A management of the
distribution of the jobs is necessary, which results in further
overhead. However, the approach of parallelization still relies
on a system containing SPoFs like the deployed message broker,
which is a disadvantage in ad-hoc networks.

This paper represents a generalized approach, which gets
along without any centralized managing or allocation principles.
The usage of centralized devices like a message broker or
application server is not necessary. In summary, none of the
presented solutions, in contrast to our approach, is intended
to be deployed in large scale networks with hard real-time
constraints as many aspect like the target platform or media
access are not resolved. Our developed prototype achieves a
high performance and already meets requirements for real-time
applications with delivery times in the range of one millisecond.

III. BASICS

First of all, before we can use WS-Eventing it is necessary
to find an event source in the network. This is done via WS-
Discovery. We use an optimized and much more scalable
version of the WS-Eventing, which is based on a DHT-
based discovery algorithm. The enhanced version of the WS-
Discovery suggests to use Kad as Peer-to-Peer network to be
able to find all services in a network only via UDP unicast
communication in ad-hoc networks instead of initially used TCP
transmissions. TCP and multicasts are avoided and therefore
suitable for automation scenarios with real-time requirements.



1

2

3

5

6

7

4
1
2
3
4
5
6
7

Fig. 3. WS-Eventing: Normal publishing of events

This framework will be used to realize a highly scalable WS-
Eventing after the event source is found. There are several
operations to interact with the event source, which are depicted
in Figure 2.

To receive notifications from an event source, a consumer
must become an event sink by performing a subscription at
the event source. The event source comprises a subscription
manager object, which now stores the new event sink and
manages it. To manage the subscription state, an event sink
can renew its subscription, which expires after a time to live
value. Furthermore, it can ask the subscription manager for its
actual subscription status by performing a GetStatus operation.
If the event sink is no longer interested in the notification
of the event source it performs an Unsubscribe operation.
Alternatively, if a subscription terminates unexpectedly the
subscription manager can send a SubscriptionEnd message
to affected devices. The mentioned messages are non-timing
critical as they are management messages.

If an event must be published to the subscribed event sinks
the event sources send the notification sequentially (see Figure
3). As this happens sequentially, it does only scale linearly in
the best case. Thus, if there is a high number of subscribed
event sinks the event source will be overburdened and the
functionality cannot be guaranteed. The notification itself is
time critical as the information in a real-time scenario must be
delivered within a specified time. However, a time interval can
be defined for real-time scenarios as it has linear scalability,
but with an increasing number of devices these time intervals
would increase significantly. Thus, the normal notification
mechanism is not suitable for real-time applications. Therefore,
an alternative approach has to be investigated, which shows
both high scalability and high reliability.

IV. OPTIMIZATIONS

In this chapter, three optimization aspects are presented.
The first is the main aspect of optimizing the forwarding
of the notification by applying a parallel distribution with
the help of event sinks. The second aspect is the usage of

1

2

3

5

6

7

4

1
2
3
4
5
6
7

3
5
7

4
6

7

Fig. 4. WS-Eventing: Optimized publishing of events

compressing XML with its overhead to achieve a more effective
data transmission. Finally, the opportunities of modifying the
subscription list at the subscription manager is discussed to
adjust it in an optimal way for the new event publishing
algorithm.

A. Paralleled Notification Mechanism

To solve the problem of low scalability, a new approach
to distribute events is presented. Instead of using only one
event source, event sinks will be acquired to help distributing
an event. The chosen devices for helping are usually event
sinks as well, which are subscribed for the same event. To
stay compatible with the WS-Eventing standard, XML is used
to describe the payload of the messages. The subscribe and
unsubscribe method is the same like in the normal WS-Eventing
process. When a device, which is the event source, throws an
event it will have a list of event sinks, which are subscribed
for it. It will now contact the first node and will send the
first half of the list with further contacts. In a second step, it
will contact the second event sink in the list and will send
the second half of the list. After these two steps have been
performed, the event source will go idle after it has received
two responses from the first two nodes. The responses are
ensuring the reliability as the messages are only sent via UDP.
The two contacted nodes will continue this procedure for their
list. An example is show in Figure 4. This new structure is
denoted as notification tree.

The distribution of a notification can be speed up non-linearly
with an logarithmic speed of RTT ∗ log(N), whereby RTT
is the round trip time between two participants and N is the
number of event sinks. As a theoretical result, with every
doubling of the event sinks only one further step is needed
due to the notification tree structure.

B. Usage of Efficient XML Interchange

As XML is human-readable, it is easy to handle for the user
but it has the disadvantage of high overhead. The presented
solution needs a reduction of the data amount to be highly
effective in the data exchange. Therefore, we decided to use



IP UDP Kad EXI‐Stream

Action EventID MsgNr EventData

Ethernet

SinkList

Fig. 5. Notification packet

Efficient XML Interchange (EXI) to keep the transmitted data
at a minimum [16]. EXI is a binary coded XML format and
thus a high compression rate of the data can be reached. A
previous work shows that by using EXI, the enormous data
overhead can be reduced and the effectiveness of the data
transmission can be increased [17].

As we use Kad as background system to realize the DHT-
based discovery [8], the WS-Eventing EXI coded data are
integrated directly into the Kad packets. All Kad packets are
UDP packets and therefore suitable for real-time applications.
The composition of an example notification frame is depicted
in Figure 5.

The EXI stream as payload of the Kad packet consists of
different elements to realize WS-Eventing, which are described
in Table I.

ELEMENT DESCRIPTION

Action Contains the message type
EventID Enables unique identification of events
ReplyTo IP address of un/subscription confirmations
MsgNr Number of the message
RelatesTo Number of the message related to
Sink-IP IP address of the even sink in subscription message
Subscription-IP Instance of the subriction manager
Subscription-ID ID of the subscription
IP-List Contains Event addresses for distribution
EventData Payload data like sensor values

TABLE I
EXI ELEMENTS

This composition enables to perform WS-Eventing in highly
performance constrained environments, e.g., embedded devices
in automation scenarios. We used an event ID to separate
between different events offered in the system. Additionally, the
question of processing/parsing the EXI-data must be evaluated,
to determine the dependency when varying the transmitted data.
This has been evaluated in [18] for hard real-time conditions
as a software or hardware/software solution.

C. Sorting the Event Sinks

By using the internal list of the subscription manager, it is
also possible to have an influence on the distribution of the
notifications. The first strategy could be to sort the list in such a
way that timing critical devices, which require the notification
as fast as possible, receive the notifications first. Alternatively,
a more reliable focused second strategy would be to sort the
list in a way that depend on the reliability of devices, which
will forward the notifications. If an event sink fails the previous
device must ask the next node in the event sink list of the failed
event sink. The newly asked event sink is now responsible for

the notification of the other event sinks of the list. In this case,
devices with a high reliability and therefore high robustness
should receive the notifications first. This is important as the
probability of a device failing is very low at the start of the
notification process and a possible delay because of timeouts
due to missing responses can be reduced. If a device fails later
in the notification chain, less nodes are effected by a worse
notification performance. Therefore, the probability that the
event source is strained again is low. Therefore, the second
strategy should be chosen to relieve the event source.

V. IMPLEMENTATION AND EVALUATION

As target platform, the ZedBoard was used and acts as an
exemplary embedded device for our investigations. ZedBoard
bases on a Zynq Z-7020 chip, which comprises a Field
Programmable Gate Array (FPGA) and an ARM Cortex A9
CPU. The ARM CPU runs at 667 MHz [19]. FreeRTOS is
used as the real-time OS and therefore allows the creation of
real-time applications [20]. The application comprises the Kad
Client, DHT-based discovery algorithm, and the WS-Eventing
protocol with its optimizations. The prototype setup consists of
19 devices connected via a 1 GBits connection over a switch.
First, the event source boots on the first board and waits
for subscription messages. After an event sink has booted, it
subscribes automatically to the event source. These steps are
not time-critical. Finally, all 18 event sinks have subscribed to
the events source and wait for notifications. Messages via a
serial COM port are only displayed after measurements have
been performed as printing messages would adulterate the
result tremendously. Via a debugging PC, it is possible to
send triggers to the event source, which now starts to send the
notification to the nodes stored in the subscription manager.
This is the moment, in which the first time stamp ttrigger will
be created. The time resolution is set to 1 µs, which is the
highest supported resolution of FreeRTOS on the ZedBoard.
Now, it depends on the publishing algorithm, which is chosen
by the triggering PC, how the publishing process is performed.

Two scenarios will be evaluated for the normal notification
and the optimized notification algorithm. The difference is the
grade of reliability. In the first case, no responses from the
event sinks are sent to event source. In fact, if this scenario is
chosen a better performance is expected as the event source
does not need to process response packets to the account of
the reliability. In the second scenario, responses from the event
sinks are expected after receiving a notification. This is more
suitable for the intended automation scenarios, which require
a high grade of reliability. For completeness, both scenarios
will be investigated and compared.

A. Scenario one: No Responses

After the trigger is received by the event source, it starts
sending its notifications to the subscribed event sinks. However,
this is done sequentially. Only the last event sink will send
a response message to event source. The second time stamp
tlast will be created at the moment the event source indicates
the response message of the last event sink.



0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15

N
o
ti
fi
ca
ti
o
n
 P
e
rf
o
rm

an
ce
 T

D
is
t
[u
s]

Number of Event Sinks

Original

Optimized

Time Step 1 Time Step 2 Time Step 3

Fig. 6. Prototype results without responses

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60

N
ot
ifi
ca
tio

n 
Pe

rf
or
m
an

ce
 T

D
is
t
[u
s]

Number of Event Sinks

OriginalOriginal

Optimized

Fig. 7. Trend lines for notification algorithm without responses

The optimized notification performs similarly but it uses the
helping event sinks to speed up the notification process. Also,
the last node will send a response to the event source to create
tlast. The last event sink is the sink in the deepest level of the
notification tree at the most right side as this is the last notified
event sink. The difference between ttrigger and tlast gives the
distribution performance of the notification TDist. The results
of the prototype setup are depicted in Figure 6. In Figure 7
the trend lines of both are compared.

As apparent, a single node can be still better than using
helping nodes. The coefficient of determination for a linear
trend line of R2 = 0.9544 compared to that of the logarithmic
trend line equating to R2 = 0.9399 is nearly identical for
the optimized notification algorithm. However, the tendency is
to be logarithmic when looking at the optimized notification
algorithm. It is clearly visible that with every doubling of
the nodes, a significant time step is visible. After the first
two event sinks received the notification, there is a significant
increased time need until the next event sink will answer. The
next significant time step is visible after the next four event
sinks have been notified, which will be the event sinks of the
next tree level. The last significant time step is visible after
the next eight event sinks have been notified.

Therefore with every level of the notification tree a big
time step is visible, which happens after every doubling of the

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15

N
o
ti
fi
ca
ti
o
n
 P
e
rf
o
rm

an
ce
 T

D
is
t
[u
s]

Number of Event Sinks

Original

Optimized

Fig. 8. Prototype results with responses

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60

N
ot
ifi
ca
tio

n 
Pe

rf
or
m
an

ce
 T

D
is
t
[u
s]

Number of Event Sinks

Optimized

Original

Fig. 9. Trend lines for notification algorithm with responses

subscribed event sinks. The increased consumed time between
two event sinks notified on the same level is much less. The time
steps haven been marked in Figure 6 for clarification reasons.
Contrary, the sequentially original notification is strictly linear
(R2 = 0.9995). Therefore, the optimized notification algorithm
will be better at a higher number of nodes.

The new parallelized approach is not better than the original
approach if only a few event sinks are present. Therefore,
we need to compare the trend lines to determine the number
of event sinks where the new approach is faster than the
original. For the normal algorithm, the derived linear, and for
the optimized a derived logarithmic trend line is chosen and
the trend is depicted in Figure 7.

The intersection between the trend lines indicates the point
where the performance of the new approach becomes better
than the original and is determined for a number of event sinks
equating to 28. Thus, if the number of devices (event sinks)
is increasing also for real-time application in the automation
scenarios the new approach could improve the notification but
with less reliability. Both notification realizations (original and
optimized) only need less than 1 ms to notify the event sinks
in the prototype setup, which makes the system suitable for
automation scenarios. Especially, the real-time capability is a
significant feature of the presented realization.



B. Scenario two: With Responses

As we are only using UDP messages for our approach to
ensure a deterministic behavior for real-time scenarios, the
reliability has to be assured.

Therefore, we have investigated the results if every event
sink has to send a response to the event source. In the original
version, the event source serialized sends out the notifications
and receives and processes the responses also serialized. If it
receives the last response, the second time stamp tlast will be
generated to determine TDist for completely distributing the
notification, which will be displayed via serial communication
interface on the debugger PC after the distribution is completely
done.

For the optimized algorithm, only the last two nodes send
their response directly to the event source so that we are able to
determine TDist. The other nodes send their responses directly
to their direct predecessor, which sends the notification to them.
The results for TDist can be seen in Figure 8. The coefficient
of determination for the original notification is R2 = 0.9929
for a linear trend. Contrary, the optimized approach has a high
coefficient of determination of R2 = 0.9785 for the logarithmic
trend (linear trend is R2 = 0.9557).

For comprehension reasons, in Figure 9 the trend lines are
depicted. Thus, the optimized approach scales much better than
the original version, which was already indicated in the version
without responses but only for higher number of event sinks.
If responses from the event sinks are required, it is clearly
visible that the optimized algorithm beats the original sequential
notification mechanism from the start. Therefore, for reliability
reasons the new approach could be a good alternative.

Compared to the result with no responses it is clearly visible
that the additional responses from the events sinks nearly have
no impact on the optimized notification mechanism. The needed
time is still below 1 ms. Contrary, the responses have significant
negative influence on the original notification mechanism as
the event source has to process every response. The optimized
approach is 52.51% better than the original notification and
has a logarithmic tendency, which enables the usage of this
approach for large scale networks.

VI. CONCLUSION AND FUTURE WORK

In this paper, an optimized algorithm for distributing notifi-
cation in WS-Eventing is presented. As the original sequential
notification algorithm in ad-hoc networks would overburden the
event source, the new algorithm uses event sinks to distribute
the notification in parallel with a logarithmic speed in the
network and therefore relieves the event source. Consequently,
the new approach has high scalability and enables the system
to inform more nodes within a specified time.

The presented prototype shows high performance and indi-
cates that notification period in the range of some milliseconds
could be achieved. Together with the mentioned DHT-based
discovery algorithm, which has real-time capabilities as well,
the system enables web services in automation scenarios. For
future work, we want to investigate the usage of more event
sources, which leads to the requirement of a controlled media

access as concurrent traffic could lead to buffer overload of
switch buffers and therefore to packet loss. A solution could
be using the work presented in [21] as middle ware.

REFERENCES

[1] Amazon. [Online]. Available: http://aws.amazon.com/
[2] Google. [Online]. Available:

https://developers.google.com/maps/documentation/business/webservices/
[3] P. C. Evans and M. Annunziata, “Industrial Internet: Pushing the

Boundaries of Minds and Machines,” General Electric, Tech. Rep.,
November 2012.

[4] OASIS, “Devices profile for web services version 1.1.”
[Online]. Available: http://docs.oasis-open.org/ws-dd/dpws/wsdd-dpws-
1.1-spec.html

[5] E. Zeeb, G. Moritz, D. Timmermann, and F. Golatowski, “Ws4d: Toolkits
for networked embedded systems based on the devices profile for
web services,” in Parallel Processing Workshops (ICPPW), 2010 39th
International Conference on, Sept 2010, pp. 1–8.

[6] OASIS, “Web services dynamic discovery (ws-discovery) version
1.1,” 2009. [Online]. Available: http://docs.oasis-open.org/ws-
dd/discovery/1.1/wsdd-discovery-1.1-spec.html

[7] D. Davis, A. Malhotra, K. Warr, and W. Chou, “Web services eventing
(ws-eventing),” W3C Recommendation, 2011. [Online]. Available:
http://www.w3.org/TR/ws-eventing/

[8] V. Altmann, J. Skodzik, P. Danielis, J. Mueller, F. Golatowski, and
D. Timmermann, “A dht-based scalable approach for device and service
discovery (accepted),” in The 12th IEEE International Conference on
Embedded and Ubiquitous Computing, 2014.

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The many faces of publish/subscribe,” ACM Comput. Surv.,
vol. 35, no. 2, pp. 114–131, Jun. 2003. [Online]. Available:
http://doi.acm.org/10.1145/857076.857078

[10] V. Trifa, D. Guinard, and M. Koehler, “Messaging methods in a service-
oriented architecture for industrial automation systems,” in Networked
Sensing Systems, 2008. INSS 2008. 5th International Conference on,
June 2008, pp. 35–38.

[11] T. Sauter, “Integration aspects in automation - a technology survey,” in
10th IEEE Conference on Emerging Technologies and Factory Automation,
2005. ETFA 2005., vol. 2, 2005, pp. 255–263.

[12] D. Gregorczyk, “Ws-eventing soap-over-udp multicast extension,” in Web
Services (ICWS), 2011 IEEE International Conference on, July 2011, pp.
660–665.

[13] Y. Huang and D. Gannon, “A comparative study of web services-based
event notification specifications,” in Parallel Processing Workshops, 2006.
ICPP 2006 Workshops. 2006 International Conference on, 2006, pp. 8
pp.–14.

[14] Y. Huang, A. Slominski, C. Herath, and D. Gannon, “Ws-messenger:
a web services-based messaging system for service-oriented grid com-
puting,” in Cluster Computing and the Grid, 2006. CCGRID 06. Sixth
IEEE International Symposium on, vol. 1, May 2006, pp. 8 pp.–173.

[15] R. Jayasinghe, D. Gamage, and S. Perera, “Towards improved data
dissemination of publish-subscribe systems,” in Web Services (ICWS),
2010 IEEE International Conference on, July 2010, pp. 520–525.

[16] J. Schneider, T. Kamiya, D. Peintner, and R. Kyusakov, “Efficient xml
interchange (exi) format 1.0 (second edition),” W3C Recommendation,
2014. [Online]. Available: http://www.w3.org/TR/2014/REC-exi-
20140211/

[17] V. Altmann, J. Skodzik, F. Golatowski, and D. Timmermann, “Investiga-
tion of the use of embedded web services in smart metering applications,”
in IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics
Society, Oct 2012, pp. 6172–6177.

[18] V. Altmann, J. Skodzik, P. Danielis, F. Golatowski, and D. Timmermann,
“Real-time capable hardware-based parser for efficient xml interchange,”
in 9th IEEE/IET International Symposium on Communication Systems,
Networks and Digital Signal Processing (CSNDSP14), July 2014.

[19] Avnet. [Online]. Available: http://www.zedboard.org/
[20] Real Time Engineers Ltd. [Online]. Available: http://www.freertos.org/
[21] J. Skodzik, P. Danielis, V. Altmann, and D. Timmermann, “Hartkad: A

hard real-time kademlia approach,” in 11th IEEE Consumer Communi-
cations & Networking Conference (CCNC), 2014, pp. 566–571.


