
Automatic Generation of System-Level Virtual
Prototypes from Streaming Application Models

Philipp Kutzer, Jens Gladigau, Christian Haubelt, and Jürgen Teich
Hardware/Software Co-Design, Department of Computer Science

University of Erlangen-Nuremberg, Germany
Email: {philipp.kutzer, jens.gladigau, haubelt, teich}@cs.fau.de

Abstract—Virtual prototyping is a more and more accepted
technology to enable early software development in the design
flow of embedded systems. Since virtual prototypes are typically
constructed manually, their value during design space exploration
is limited. On the other hand, system synthesis approaches
often start from abstract and executable models, allowing for
fast design space exploration, considering only predefined design
decisions. Usually, the output of these approaches is an "ad hoc"
implementation, which is hard to reuse in further refinement
steps. In this paper, we propose a methodology for automatic
generation of heterogeneous MPSoC virtual prototypes starting
with models for streaming applications. The advantage of the
proposed approach lies in the fact that it is open to subsequent
design steps. The applicability of the proposed approach to real-
world applications is demonstrated using a Motion JPEG decoder
application that is automatically refined into several virtual
prototypes within seconds, which are correct by construction,
instead of using error-prone manual refinement, which typically
requires several days.

I. INTRODUCTION

Today, modern Multi-Processor System-on-Chip (MPSoC)
architectures consist of a mixture of microprocessors, digital
signal processors (DSPs), memory subsystems, and hardware
accelerators, as well as interconnect components. It is notice-
able that the adoption of programmable logic in such electronic
systems is more and more increasing. Driven by this rise, the
process of software development becomes the dominating part
during system design. In the course of software development,
software engineers have to cope with operating systems,
communication stacks, drivers, and so forth. In order to allow
early software development, virtual prototyping is a more and
more frequently used technology in Electronic System Level
(ESL) design. There, the desired target platform is modeled
as an abstract, executable, and often completely functional
software model. Hence, the virtual prototype includes all func-
tional properties of the target platform, while non-functional
properties, such as timing behavior, are mostly disregarded.

In contrast to FPGA-based prototyping, virtual prototypes
are deployed before architectural models on register-transfer-
level are available. Due to this early availability, the overall
time spent on hardware and software design can be reduced,

Supported in part by the German Science Foundation
(DFG Project HA 4463/3-1)

Source

Sink

c1

c8

Parser

MComp

c7 c6

c2

c5

Recon

IDCT

c3 c4

CPU HWMemory

Bus

Fig. 1. Application model of a Motion JPEG decoder, clustered and mapped
to an architecture template. The architecture template consists of a CPU, a
hardware accelerator (HW) and an external memory. All the components are
connected via a bus.

because software can be implemented, refined, tested, de-
bugged, and verified on realistic hardware models in parallel to
the hardware design process. Nevertheless, additional time is
needed for implementing such prototypes from the functional
and desired architectural system specification. This drawback
could be avoided with an automatic virtual prototype genera-
tion. This would further speed up the design process and in
addition, errors, often made in manual prototype generation,
are avoided.

Describing a complex application abstracted as an actor-
oriented model [1] is a more and more accepted approach in
ESL design. Such models are used to describe the functional
behavior of the application. Therefore, they consist of con-
currently executing actors, which communicate over abstract
channels. In our approach, the communication takes place
via channels with FIFO semantics. An example is shown
in Fig. 1 for a small actor-oriented model, a Motion JPEG
decoder, which consists of the actors Source, Parser, Re-
construction (Recon), Inverse Discrete Cosine Transformation
(IDCT), Motion Compensation (MComp), and Sink, as well
as FIFO channels c1 to c8. In order to generate a virtual
prototype starting with an actor-oriented model, additional
information about the system architecture candidates and the

978-1-4577-0660-8/11/$26.00 c© 2011 IEEE

128

mapping possibilities of the functional components have to be
specified. In the lower part of Fig. 1, a possible mapping to
an architecture template is given by the dotted arrows.

In the following, we present a method for automatic
generation of MPSoC virtual prototypes from actor-oriented
models. Our proposed approach performs the virtual prototype
generation in two steps: (i) Based on a given resource map-
ping, communication within the application model is refined
to transactions in the virtual prototype, and controllers for
intra-resource communication are generated. (ii) The virtual
prototype is generated by assembling cycle-accurate processor
models, memory models, and models for hardware accelera-
tors using bus models, and synthesizing the software for each
processor, according to the given mapping.

The remainder of this paper is structured as follows: Sec-
tion II reflects related work. In Section III, a brief overview
of our approach is given. Section IV describes application
modeling. In Section V, the automatic generation of architec-
tural TLM models is discussed in more detail. Section VI de-
scribes the architectural refinement in more detail. Section VII
presents experimental results from applying the proposed
prototype generation approach to a Motion JPEG decoder,
a multimedia streaming application mapped onto an MPSoC
architecture. Finally, conclusions are given in Section VIII.

II. RELATED WORK

As virtual prototypes are nowadays commonly used in
system-level design flows, several commercial as well as
free of charge tools exist to build, simulate and evaluate
such prototypes. Most prominent are Platform Architect from
CoWare, CoMET from VaST and OVPsim [2] from Imperas.
The two first mentioned tools were acquired by Synopsys [3]
within the last year. Most existing virtual prototyping tools
support the integration of transaction level models written in
SystemC [4] in the prototypes. However, none of them allows
the automatic transformation of a formal description, like an
actor-oriented model, to a virtual prototype.

In general, mapping formal models on MPSoCs is a current
research topic in system synthesis (e.g., see [5], [6]). There
exist several system-level synthesis tools that automatically
map formal described applications to a MPSoC target, like
Daedalus [7], Koski [8], and SystemCoDesigner [9]. All these
approaches want to achieve a common purpose. They target
final product generation. This means, they have to cover the
complete design flow, starting with an high-level application
specification down to the running system. Caused by this, their
integration into existing design flows is hard to establish.

In contrast to system synthesis tools, our proposed approach
targets automatic virtual prototype generation. In this scenario,
important design decisions are reflected in the generated proto-
type, while support for further manual refinement is retained.
Hence, the product quality still could be influenced by a
designer and, even more important, our proposed approach

Application Model
Architectural

Template

TLM Generation

Architectural

Model (TLM)

Prototype Generation

System-Level

Virtual Prototype

Software Refinement

Automatic 2-step

Prototype Generation

Fig. 2. Design flow from an application model, represented by an abstract
executable specification, to a virtual prototype. The flow includes automatic
mapping of actor-oriented models to TLM architecture models, as well as
virtual prototype generation.

could be easily integrated in established industrial design
flows.

III. VIRTUAL PROTOTYPE GENERATION - OVERVIEW

The goal of our system-level design approach is to auto-
matically implement abstract system descriptions written in
SystemC as virtual MPSoC prototypes. The associated design
flow is depicted in Fig. 2.

At the beginning of our ESL design process, an abstract
model has to be derived for the desired application. In our
approach, a distinction is drawn between the application
model, which describes the functional behavior of the system,
and the architecture template, which represents all architecture
instances of the system.

The system behavior is modeled in form of actor-oriented
models, which only consist of actors and channels, as depicted
in the Motion JPEG example from Fig. 1. Actors are the
communicating entities, which are executed concurrently. For
communication, tokens are produced and consumed by actors,
and transmitted via dedicated channels.

The architecture template of the system is represented
by a heterogeneous MPSoC platform, which is specified by
connected cores. Single actors or clusters of actors can either
be mapped onto processor elements (CPU) or on dedicated
hardware accelerators (HW), as depicted in Fig. 1. Hardware
accelerators will typically be used for computationally in-
tensive or time critical parts of the application. In general,
System-on-Chips include both processor elements as well
as hardware accelerators. Depending on the actor mapping,

129

communication channels can either be mapped on internal
memory of data processing units (CPU or HW accelerators),
or on shared memory modules. In the Motion JPEG decoder
example, all channels except c1 and c8 are mapped to the
hardware accelerator, as communication takes place internally.
Channels c1 and c8 represent the communication between the
CPU and the dedicated accelerator, and hence have to be
mapped to the shared memory.

After modeling the application, the architecture template,
and defining a mapping of functional to structural elements,
an architectural model will be automatically generated. In this
intermediate model, the actors are clustered according to the
mapping on architectural resources. Due to the fact that virtual
prototypes are usually implemented using transaction level
modeling (TLM), we use the OSCI TLM-2.0 [10] standard
in our design flow.

For virtual prototyping, parts of the architectural model are
subsequently replaced by the corresponding resources from
a virtual component library, which consist of cycle-accurate
processor models, as well as models of communication enti-
ties. Beside the architectural refinement, software is generated
and cross-compiled for each CPU, to match its instruction set
architecture (ISA).

The resulting virtual prototype can now be used for further
software and communication refinement. Moreover, due to
the cycle-accurate processor models, performance estimation
becomes possible. The steps of architectural mapping as well
as prototype generation will be described later in more detail.
First, our application modeling approach is described.

IV. APPLICATION MODEL

This section introduces our concept of actor-oriented mod-
eling, which is necessary to understand our proposed mapping
approach. In actor-oriented models, actors are potentially
executed concurrently and communicate over dedicated ab-
stract channels. Thereby, they produce and consume data (so
called tokens), which are transmitted by those channels. These
models may be represented as bipartite graphs, consisting of
channels c ∈ C and actors a ∈ A. In the following, we use
the term network graph for this kind of representation.

Definition 1 (network graph): A network graph is a di-
rected bipartite graph Gn = (A,C, P,E), containing a set of
actors A, a set of channels C, a channel parameter function
P : C → N∞ × V ∗ that associates with each channel
c ∈ C its buffer size n ∈ N∞ = {1, 2, 3, ..,∞}, and also a
possibly nonempty sequence v ∈ V ∗ of initial tokens, where
V ∗ denotes the set of all possible finite sequences of tokens
v ∈ V . Additionally, the network graph consists of directed
edges e ∈ E ⊆ (C ×A.I)∪ (A.O×C) between actor output
ports o ∈ A.O and channels, as well as channels and actor
input ports i ∈ A.I .
An example of a network graph is already given in the upper
part of Fig. 1.

start

i1(1)&gcheck&o1(1)/fpositive

i1(1)&¬gcheck&o2(1)/fnegative

i1

o1

o2

fpositive fnegativegcheck

double in = i1[0];

o1[0] = in;

return i1[0] >= 0; double in = i1[0];

o2[0] = in;

Fig. 3. Visual representation of an actor, which sorts input data according
to its algebraic sign. The actor consists of one input port i1 and two output
ports o1 and o2.

Definition 2 (Channel): A channel is a tuple c =
(I,O, n, d) containing channel ports partitioned into a set of
channel input ports I and a set of channel output ports O,
its buffer size n ∈ N∞ = {1, 2, 3, ..,∞}, and also a possibly
empty sequence d ∈ D∗ of initial tokens, where D∗ denotes
the set of all possible finite sequences of tokens d ∈ D.
In the following approach, we will use SysteMoC [11], a
SystemC [4] based library for modeling and simulating actor-
oriented models. In the basic SysteMoC model, each channel
is an unidirectional point-to-point connection between an actor
output port and an actor input port, i.e. |c.I| = |c.O| = 1. The
communication between actors is restricted to these abstract
channels, i.e. actors are only permitted to communicate with
each other via channels, to which the actors are connected by
ports.

In a SysteMoC actor, the communication behavior is sep-
arated from its functionality. The communication behavior is
defined as finite state machine (FSM); the functionality is a
collection of functions that can access data on channels via
ports. These functions are classified in actions and guards, and
are driven by the finite state machine (FSM). So SysteMoC
follows the FunState [12] (Functions driven by State machines)
approach.

An action of an actor is able to access data on all channels,
the actor is connected to, and is allowed to manipulate the
internal state of the actor implemented by internal variables.
In contrast, a guard function is only allowed to query, not
to alter neither the internal state nor the data on channels.
A graphical representation of a SysteMoC actor is given in
Fig. 3. The actor Sorter, which is used to sort input data tokens
according to algebraic sign, possesses one input port (i1) and
two output ports (o1 and o2). Tokens from input port i1 will
be forwarded to output port o1 by the function fpositive, if the
activation pattern i1(1)&gcheck&o1(1) of the state transition
from the state start to the state start evaluates to true. This
pattern determines under which conditions the transitions may
be taken. In SysteMoC, the activation pattern can depend on

130

1 class Sorter : smoc_actor {
2 public:
3 smoc_port_in<double> i1;
4 smoc_port_out<double> o1;
5 smoc_port_out<double> o2;
6 smoc_firing_state start;
7 Sorter(sc_module_name name) : smoc_actor(name,

start) {
8 start =
9 (i1(1) && GUARD(check) && o1(1)) >>

10 CALL(positive) >> start
11 |
12 (i1(1) && !GUARD(check) && o2(1)) >>
13 CALL(negative) >> start;
14 }
15 private:
16 bool check(void) const {
17 return i1[0] >= 0;
18 }
19 void positive(void) {
20 double in = i1[0];
21 o1[0] = in;
22 }
23 void positive(void) {
24 double in = i1[0];
25 o2[0] = in;
26 }
27 };

Listing 1. SysteMoC code for the actor Sorter. The FSM of the actor is
defined in the constructor of the actor class, whereas the functionality is
encoded as private member functions.

some internal state of the actor, on availability and values of
tokens on input channels, and on availability of free space on
output channels. In our example, the state transition will be
taken, if at least one token is available on input port (i1(1)),
the guard gchecks evaluates to true (data on input channel has
positive algebraic sign), and output port o1 has space for at
least one additional token (o1(1)). Analog to this, the second
transition is taken if input data is negative. The corresponding
SysteMoC code is given in Listing 1.

To summarize, the transition-based execution of SysteMoC
actors can be divided into 4 steps: (i) Evaluation of all
activation patterns k of all outgoing state transitions in the
current state qc ∈ Q. (ii) Non-deterministically selecting and
taking of one activated transition t ∈ T . (iii) Execution of the
corresponding action f ∈ a.F . (iv) Notification of token con-
sumption/production on channels connected to corresponding
input and output actor ports after completion of action as well
as transition to the next state.

During system synthesis from actor-oriented models, actors
a ∈ A and the communication channels c ∈ C are mapped to
components of a system architecture. To reflect architectural
structure in network graphs after mapping, nodes can be clus-
tered. For representation of clustering, we define a clustered
network graph.

Definition 3 (clustered network graph): A clustered net-
work graph Gcn = (Gn, T) consist of a network graph Gn

and a rooted tree T such that the leaves of T are exactly the
vertices of Gn. Each node x of T represents a cluster X(x) of
the vertices of network graph Gn that are leaves of the subtree

x2x1 x3

x4

Fig. 4. Clustered network graph of the Motion JPEG example. The cluster
X(x1) represents the CPU, X(x2) the communication bus and X(x3) the
hardware accelerator. Cluster X(x4) represents the whole system.

rooted by x.
The representation as tree illustrates the hierarchical structure
of the system. This means, the root of T represents the whole
system, whereas nodes x ∈ T with height(x) = 1 represent
the components of the system. As reuse of parts of models
is common in the design process, hierarchical structures with
more than two levels are possible. The clustered network graph
of the example from Fig. 1 is depicted in Fig. 4.

Although we used SysteMoC, our approach is not restricted
to this framework and can be adapted to other frameworks
for actor oriented design, e.g. pure SystemC FIFO channel
communication. A deeper insight into SysteMoC is given
in [11].

V. GENERATING THE TLM ARCHITECTURE

Transaction level modeling (TLM) with SystemC has be-
come apparent as de-facto industry standard for virtual proto-
typing and architectural modeling [13], [14]. These models are
characterized by an encapsulation of low-level communication
details. Due to abstraction, very fast simulation speed can
be achieved. To enable fast simulation, details of bus-based
communication protocol signaling are replaced with single
transactions. In the course of releasing a TLM standard
(OSCI TLM-2.0) to enforce interoperability of models, the
Open SystemC Initiative defined two coding styles [15]: the
loosely-timed (LT) and the approximately-timed (AT) coding
style. The loosely-timed coding style allows only two timing
points to be associated with each transaction, namely the start
and the end of the transaction. This timing granularity of
communication is sufficient for software development using
a virtual prototype model of an MPSoC. A transaction in
an approximately-timed model is broken down into multiple
phases, with timing points marking the transition between two
consecutive phases. Due to the finer granularity of timing,
approximately-timed models are used typically in architectural
exploration and performance analysis. As our approach targets
software development, or more precisely the refinement of

131

parts of the application in software, by means of virtual
prototyping, the loosely-timed coding style is adequate [15].

As described, actors a ∈ A and the communication channels
c ∈ C are partitioned to clusters X(x) and mapped to
components of a system architecture. Due to the mapping,
the channel communication can either be internal, in case
both communicating actors aa and ab mapped onto the same
resource (aa ∈ X(xy) and ab ∈ X(xy)), or external, in
case communication crosses cluster boundaries (aa ∈ X(xy)
and ab /∈ X(xy)). For intra-resource communication, FIFOs
can be put in private memory of the architectural component,
whereas FIFOs of inter-resource communication, like c1 and
c8 from Figure 1, have to be placed in an external memory
model. Either way, actor communication semantics through
ports are not altered, in order to reuse the existing actors
written in SystemC based SysteMoC. So, the challenge of
this step in design flow is to map the FIFO-based communi-
cation via dedicated channels to a memory-mapped bus-based
communication with global and local shared memory. Since
our abstract communication semantics (read, write, commit)
calls for uniform channel access, access transparency has to
be ensured after mapping to architectural template, resulting
in the transaction level architectural model. As communicat-
ing actors on different resources are concurrently executed,
simultaneous access to FIFO storage has to be avoided. This
means that memory coherence as well as cache coherence has
to be guaranteed. To cope with actor clustering and to ensure
synchronized channel access, independent of communication
mapping, we use aggregators and adapters in our approach that
implement a suitable communication protocol [16]. Adapters,
by which the SysteMoC ports (i ∈ A.I and o ∈ A.O)
are substituted, serve as links between the actors and the
transaction level. Due to the fact that more than one actor
can be mapped to one resource, and actors can possess
multiple ports, an aggregator is needed for each transaction
level component (X(xi) : height(xi) = 1) to encapsulate
the desired number of adapters. These aggregators perform
transaction level communication and implement the interface
of the component to the rest of the architectural model. There
is no need to connect adapters for internal channels with the
aggregator, because no communication will take place over
component boundaries. In Fig. 1, communication between the
actors Parser, Recon, MComp and IDCT is internal and can be
implemented using, e.g., internal memory. In our approach, we
use a transaction level memory model for each communication
channel. In the following, we will describe the functionality
of adapter and aggregator in more detail.

A. Adapter

An adapter adapts between transactions in the virtual proto-
type and the asynchronous FIFO channel communication used
in the application model. Hence, the communication adapter
implements two different interfaces. The interface towards the
actor is equivalent to the abstract channel, which has to be

Parser Recon

Out c2 In c2

TLM Memory Model

Virtual Channel c2

Fig. 5. Mapping of parts of cluster X(x3) from the model, depicted in Fig. 1,
to a architectural component. The internal communication takes place over a
virtual channel, which substitutes the abstract channel. Therefore, adapters
adapt between the abstract model and the transaction level model. The FIFO
queue semantics are implemented using a TLM memory model.

replaced. To sustain abstract communication semantics, the
adapter needs to access tokens in a random manner and to
commit completed transitions via this interface. Therefore, a
conversion of the token data type (e.g., serialization and dese-
rialization) has to be performed in adapters. An adapter also
has to respect the abstract channel synchronization mechanism.
This means, the adapter has to provide an interface through
which the adapter can be notified when tokens on channel are
produced or consumedi, respectively. This notification can be
used to trigger the corresponding actor waiting for free space
or tokens on channel.

The transaction level interface consist of three transaction
level communication sockets (see Fig. 5). One is used for data
transmission. The actor, which is connected to the adapter,
can read or write data from a memory through this socket.
The other two sockets are needed to sustain the channel
synchronization. For synchronization, the adapters communi-
cate among each other over arbitrary TLM communication
resources. Therefor, a dedicated address has to be assigned to
each adapter.

Due to the fact that the SysteMoC channels possess mem-
ory, the FIFO storages have to be mapped to resources.
As different locations are possible, we allocate the storage
in a memory, to which the adapters are connected to. For
internal communication, the sockets of the adapters can be
directly coupled with each other, as depicted in Fig. 5. The
synchronization sockets of the two communicating adapters
are directly coupled, whereas the data sockets are connected
with the memory.

The memory of external communication is accessible over
a bus system, to which the aggregator is connected (see
Fig. 6). Allocation of storage in one adapter or splitting and
distributing the storage over both communicating adapters is
also possible. Independent of the chosen implementation and
mapping, each adapter needs to know to which address space
his buffer is mapped to, in order to read or write tokens.

132

X(x1) X(x3)

Out c8In c8 In c1Out c1

Aggregator Aggregator

TLM Bus Model

TLM Memory Model

Fig. 6. Mapping of the cross component communication between HW and
CPU from Fig. 1. For the sake of clarity, internal communication structure is
omitted.

B. Aggregator

As real computational resources like CPUs or DSPs have
a limited number of connection pins, each node x ∈ T
besides the root node needs a mechanism that aggregates
the children connected to x. For nodes that represent data
transferring units, like buses (x2), this is done by arbitration
and address translation. Unlike the communication resources
(data transferring units), the computational resources (data
processing units) need an aggregator for this purpose. The
aggregators contain TLM ports to perform transaction level
cross component communication. Therefore, they implement
the communication protocol for the connected adapters at the
transaction level. For communication, aggregators communi-
cate among each other over arbitrary TLM communication
resources. For this purpose, each aggregator is assigned a
dedicated address-range. Its size depends on the number of
adapters registered to the aggregator. So each adapter is
assigned a single address, to which it is accessible for event-
based synchronization. Beside his own address range, each
aggregator has to know addresses of peer adapters, which
are associated with registered adapters, and addresses of the
corresponding FIFOs in memory.

VI. VIRTUAL PROTOTYPE GENERATION

In the final step of our automatic design flow, a virtual pro-
totype is generated based on the transaction level architectural
model.

A. Architectural Refinement

In order to allow for an early software development, parts of
the architecture have to be substituted by virtual component
models. In our approach, all resources except the hardware
accelerators are replaced. As our approach focuses on software

TABLE I
MEASUREMENT TERMS OF THE 5 DIFFERENT VIRTUAL PROTOTYPES.

VP Instructions Simulation VP Performance

Host[s] VP[ms] CPI MIPS

I 4944835683 1997 44285 1.79 111.66
II 5319738192 521 30494 1.15 174.45
III 5726625319 1791 29222 1.02 195.97
IV 5765601708 660 26993 0.94 213.59
V 6188808202 1760 7224 0.23 856.66
VI 3492102237 550 30870 1.77 113.12

development, the inserted processor models must provide an
instruction set simulator, in order to simulate or furthermore
debug the software running on the models. Therefore, we use
a commercial virtual component library [3], which provides
the opportunity to integrate TLM. This feature is necessary
to couple the hardware accelerators with the virtual compo-
nents. In order to sustain the abstract channel synchronization
mechanism, an interrupt controller is added for each processor
element. By the use of this controller, the processor element
can be informed about channel data modification by another
processor or hardware accelerator.

B. Target Software Generation

During the process of target software generation, the actor
description in SystemC is transformed into standard C/C++
code. Therefore, the ports for communication of the actor are
replaced by pointers to FIFO interfaces, and the finite state ma-
chine is encoded as switch-case statement. The FIFO interfaces
represent the communication interface equivalent to the TLM
communication adapters, described in Section V. Moreover,
scheduling strategies have to be implemented, in case multiple
actors are mapped on the same processor element.

VII. EXPERIMENTAL RESULTS

In order to show the applicability of our approach, we
present our first results on generating virtual prototypes from
an actor-oriented Motion-JPEG model. Therefore, we use a
more fine-grained model than given in Fig. 1, which consists
of 19 actors, interconnected by a total of 56 FIFO channels.
In Table I, the results of several test cases in terms of different
mappings are presented. Since the architecture template con-
tains 19 processors, 19 hardware accelerators, and a shared
memory, which all are connected by bus, many architecture
instances exist. With our approach, it is possible to generate
virtual prototypes from all of them. To show the applicability,
we consider only a few mappings serving as representatives.

Our first prototype (I) consists of a single processor
(ARM926), onto which all actors are mapped. For the next
two test cases, two processors are allocated and connected
via a bus. For this architecture instance, two mappings are
tested, respectively: (i) The IDCT actors are mapped to one
processor, all remaining actors to the other one (II). (ii)
The actors are mapped to the processors alternately, i.e. the

133

I II III IV V V I
0

10

20

30

40

50

60

Prototype

Ti
m

e
(s

)

generate
compile

Fig. 7. Times measured for generation and compilation of the different
configurations.

neighbor of each actor in the decoding pipeline is mapped
to the processor different than the processor to which the
actor itself is mapped (III). For the FIFO communication
between the two processors, a memory is additionally allocated
and connected to the bus. In the fourth prototype (IV), three
processors and a memory are allocated. Here, actors Source
and Sink are clustered to one processor, IDCT is mapped to
the second one, and the remaining actors are mapped to the
third. To take the full advantage of pipelined execution, 19
processors are allocated in the fifth prototype (V). In the last
test case, VI, one processor and one hardware accelerator are
allocated. This test case is analog to the second prototype,
except the functionality of the IDCT actors is swapped to the
hardware accelerator.

Figure 7 shows the time needed for prototype generation
and compilation. It can be seen that the time spent for
prototype generation is nearly independent of the mapping,
whereas the time for compiling depends on the components
of the prototype. On the one hand, it is obvious, that the
more processors are allocated, the more time is needed for
compiling. On the other hand, the code for the transaction level
hardware accelerators is more complex than the code running
on processors, so more time is needed for compiling hardware
accelerators. However, in summary it can be seen that all
virtual prototypes have been generated within seconds, instead
of hours. In the following, 5 measurement terms will be tested
in order to decode 10 images (176x144): total instructions
executed; cycles per instruction (CPI); million instructions per
second (MIPS); simulation time (host time); simulated time.
In order to make a statement of system performance, not of
simulator performance, the terms CPI and MIPS relate to the
simulated time. The corresponding values are given in Table I.

It can be seen that the performance of the prototypes behave
as expected. The more processors are allocated, the better the
pipeline of the decoder can be exploited. This means less
cycles are needed for one instruction, what causes a higher
MIPS and a lower CPI rate. The small difference between II
and III is based on a better workload distribution.

As different developer teams implement different parts of

the application, it is often unneeded to refine all components
of the TLM architectural model to virtual processor models.
Prototype VI shows that there is no appreciable difference in
simulated and host time in contrast to the completely refined
model (II).

VIII. CONCLUSION

In this paper, we have presented a two-step methodology
for automatically generating virtual system-level prototypes
from an abstract system specification. Our main goal was to
provide a methodology to remove the dependency on hardware
availability, needed for software development, in an early
phase of the design flow, which starts with an abstract and
executable application model. For this purpose, design deci-
sions are first represented in SystemC TLM, which is typically
supported by all commercial virtual prototyping tools. Second,
the TLM generation is used to assemble the virtual prototype
and generate the embedded software. To show the applicability
of our approach to real-world applications, we presented first
simulation results for an actor-oriented Motion JPEG model.

REFERENCES

[1] E. A. Lee, “Overview of the ptolemy project, technical memorandum no.
ucb/erl m03/25,” Department of Electrical Engineering and Computer
Science, University of California, Berkely, CA, USA, Tech. Rep., Jul.
2004.

[2] OVPworld, http://www.ovpworld.org.
[3] Synopsys, http://www.synopsys.com.
[4] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with

SystemC. Norwell, MA, USA: Kluwer Academic Publishers, 2002.
[5] O. Moreira, F. Valente, and M. Bekooij, “Scheduling multiple inde-

pendent hard-real-time jobs on a heterogeneous multiprocessor,” in
Proceedings of EMSOFT, 2007, pp. 57–66.

[6] P. K. F. Hölzenspies, J. L. Hurink, J. Kuper, and G. J. M. Smit, “Run-
time spatial mapping of streaming applications to a heterogeneous multi-
processor system-on-chip (MPSoC),” in Proceedings of DATE, 2008, pp.
212–217.

[7] M. Thompson, T. Stefanov, H. Nikolov, A. D. Pimentel, C. Erbas,
S. Polstra, and E. F. Deprettere, “A framework for rapid system-level
exploration, synthesis, and programming of multimedia MP-SoCs,” in
Proceedings of CODES+ISSS, 2007, pp. 9–14.

[8] T. Kangas et al., “UML-based multi-processor SoC design framework,”
ACM TECS, vol. 5, no. 2, pp. 281–320, May 2006.

[9] J. Keinert, M. Streubühr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt,
J. Teich, and M. Meredith, “SYSTEMCODESIGNER - An Automatic
ESL Synthesis Approach by Design Space Exploration and Behavioral
Synthesis for Streaming Applications,” TODAES, vol. 14, no. 1, pp. 1–
23, 2009.

[10] Open SystemC Initiative (OSCI)., “OSCI SystemC TLM 2.0,”
http://www.systemc.org/downloads/standards/tlm20/.

[11] J. Falk, C. Haubelt, and J. Teich, “Efficient representation and simulation
of model-based designs in systemc,” in Proceedings of FDL, Sep. 2006,
pp. 129–134.

[12] L. Thiele, K. Strehl, D. Ziegenbein, R. Ernst, and J. Teich, “Funstate—an
internal design representation for codesign,” in Proceedings of ICCAD.
Piscataway, NJ, USA: IEEE Press, 1999, pp. 558–565.

[13] F. Ghenassia, Transaction-Level Modeling with SystemC. Dordrecht:
Springer, 2005.

[14] B. Bailey and G. Martin, ESL Models and their Application. Dordrecht:
Springer, 2010.

[15] OSCI TLM-2.0 user manual, Open SystemC Initiative, Jun. 2008.
[16] J. Gladigau, C. Haubelt, B. Niemann, and J. Teich, “Mapping actor-

oriented models to TLM architectures,” in Proceedings of Forum on
specification and Design Languages, FDL 2007, Barcelona, Spain, Sep.
2007, pp. 128–133.

134

