

Minimal Transmission Power as Distance Estimation for Precise Localization in Sensor Networks

Jan Blumenthal, Dirk Timmermann University of Rostock

IWCMC, Vancouver 2006/07/06

Focus of Presentation

- Preconditions
 - Hundreds of sensor nodes are randomly deployed
 - Position initially unknown
- Why do we need localization?
 - Measurement requires position
 - Example: Self organization, self healing, geographic routing
- Problem Statement
 - Localization needs distance information
 - How to measure distances ?

Flood prevention by dike observation

Distance Estimation with RSSI in Theory

- Energy of signal decreases with distance *d*
- Sensor node measures energy of received signal
- Compared to a reference voltage
- Received Signal Strength supported by hardware
 - Cheap and always available

Power Relations:

$$\frac{P_{RX}}{P_{TX}} = \left(\frac{\lambda_0}{4\pi d}\right)^2 G_{RX} G_{TX}$$

$$P_{R}(d)\left[dBm\right] = P_{S}\left[dBm\right] + 10 \cdot \log\left[\left(\frac{\lambda_{0}}{4\pi}\right)^{2} G_{R}G_{S}\right] - 20 \cdot \log(d)$$

- P_{TX} Transmission Power P_{RX} Received Power G_{TX} Gain at Sender
- G_{RX} Gain at Receiver
- d Distance
- λ_0 Wave length

3

Distance Estimation with RSSI in Theory II

Friis' Equation:

- P_{TX} Transmission Power
- P_{RX} Received Power
- G_{TX} Gain at Sender
- G_{RX} Gain at Receiver
- d Distance
- λ_0 Wave length

RSSI on Chipcon CC1010

- graph not stable
- high variance

RSSI in Theory and in Reality

<u>Result:</u> In Reality, distances based on RSSI are inaccurate.

Approach: Minimal Transmission Power

Approach

Assumption:

- Max. transmission power
- Measuring RSSI is inaccurate caused by
 - Measuring principle
 - Hardware effort

Approach:

- Stepwise increasing transmission power P_{TX}
- In case of reception of a message the transmission power P_{TX} specifies a distance d
- Utilize only smallest transmission power

Finding the Distance

- Transmission power P_{TX} is controlled via Special Function Register SFR_{TX}
- SFR_{TX} of tranceiver is transmitted with every message
- Distance *d* is calculated out of smallest SFR_{TX}

Example (Scatterweb)

- *SFR_{TX}* tunable in range *0..100* (300m)
- $SFR_{TX}(16\pm 4) \rightarrow d=2m$

9

Relation between Transceiver and SFR_{TX}

Approximated transfer function H(x) of tranceiver (npn transistor)

Relation between Distance and SFR_{TX}

Already known:

- = Transmission Power
- = Transmission Register
- = Received Power
- = distance

 P_{TX}

 P_{RX}

d

 SFR_{TX}

Adjust Transmission Power via Special Function Register SFR_{TX}

Min. Transmission Power

- Distance *d* can be easly calculated from transmitted SFR_{TX}
- Smaller estimation error compared to RSSI

Measurement Results: Scatterweb

We know, in theory:

$$SFR_{TX} \approx \sqrt{d}$$

Min. SFR_{TX} of sensor nodes based on Scatterweb (indoor, ideal conditions, 40 samples each)

Linearized Measurements

MD

Measurement Results: Scatterweb

15

Example Application

Example Application with Scatterweb

Task:

Determine position of moving sensor node

Localization Algorithm:

Weighted Centroid Localization (WCL)

- simple and fast calculation
- small memory footprint
- acceptable positioning error

17

References:

Jan Blumenthal, Frank Reichenbach, Dirk Timmermann: Precise Positioning with a Low Complexity Algorithm in Ad hoc Wireless Sensor Networks, PIK - Praxis der Informationsverarbeitung und Kommunikation, Vol.28 (2005), Journal-Edition No. 2, S.80-85, ISBN: 3-598-01252-7, Saur Verlag, Deutschland, June 2005

Jan Blumenthal, Frank Reichenbach, Dirk Timmermann: Position Estimation in Ad hoc Wireless Sensor Networks with Low Complexity (Slides), Joint 2nd Workshop on Positioning, Navigation and Communication 2005 (WPNC 05) & 1st Ultra-Wideband Expert Talk 2005 (05), S.41-49, ISBN: 3-8322-3746-1, Hannover, Deutschland, March 2005

Weighted Centroid Localization (WCL)

Approach:

- Positioning by centroid determination
 P_i (CGLCD)
- Improved precision by weighting measured distance *d_{ix} using w_{ij}()*

18

/ MD

Weight-based on Distances

Definition of Weight:

Weight $w_{ij}()$ depends on measured distance between beacon and sensor node.

 $w_{ij} = \frac{1}{\left(d_{ij}\right)^g}$

How to determine *d_{ii}*?

Operations on Beacons

- Beacons are sensor nodes with already known position
- Send out messages with own position and currently adjusted SFR_{TX}

Operations on Sensor Nodes

Reduce high Oscillating Measurements

Demonstrator Show

- 4 beacons at all corners, one unknown node was moved
- Localization error: 0.3m
- Notation:
 - P12 : current transmission power is 12
 - aP10: averaged transmission power is 10

/ MD`

24

Advantages of min. Transmission Power

- simple distance estimation
- easy to implement

Discussion

more accurate than RSSI

Remarks

- based on circular transmission range
- concurrent channel access through hidden terminal problem
- numerous sources of interferences (sensor nodes, steel girders, obstacles)
- noticeable delays caused
 - increasing transmission power
 - round counting

Conclusion

Essentials

- Wireless sensor networks require localization of sensor nodes
- Most distance estimations are inaccurate especially in indoor use

New approach to estimate a distance

Minimal transmission power

Proof of concept

- Higher resolution and smaller variances than RSSI
- Example application combined with Weighted Centroid Localization (WCL)

Thank you!

χ

Carpone Paral

B Leeper'

8000

Ċ

