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Focus of Presentation

• Preconditions
– Hundreds of sensor nodes are 

randomly deployed
– Position initially unknown

• Why do we need localization?
– Measurement requires position
– Example: Self organization, self 

healing, geographic routing

• Problem Statement
– Localization needs distance

information
– How to measure distances ?

Flood prevention by dike
observation
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Distance Estimation with RSSI in Theory

• Energy of signal decreases with 
distance d

• Sensor node measures energy of 
received signal

• Compared to a reference voltage
• Received Signal Strength

supported by hardware
– Cheap and always available
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Distance Estimation with RSSI in Theory II

2
0

4
RX

RX TX
TX

P G G
P d

λ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

0

4
RX TX TX

RX

TX

RX

G G Pd
P

Pk
P

λ
π

=

=

2
0

4
R

R S
S

P G G
P d

λ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

distance d [m]
R

ec
ei

ve
d 

Si
gn

al
 S

tr
en

gt
h 

[d
B

m
]

Measured RSS1

d1

PTX Transmission Power
PRX Received Power
GTX Gain at Sender
GRX Gain at Receiver
d Distance
λ0 Wave length

Friis‘ Equation:

max TXd P∼

Rearrange

~



5

RSSI on Chipcon CC1010

- graph not stable
- high variance
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RSSI in Theory and in Reality

Transmitter Receiver

RSSI

Message Message

RSSI in Theory
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Result: In Reality, distances based on RSSI are inaccurate.
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Approach: Minimal Transmission 
Power
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Approach

Assumption:
– Max. transmission power
– Measuring RSSI is inaccurate 

caused by
• Measuring principle
• Hardware effort

Approach:
– Stepwise increasing transmission 

power PTX

– In case of reception of a message 
the transmission power PTX
specifies a distance d

– Utilize only smallest transmission 
power Distance d

• Moving graph
• Find crossing 

with x-axisPTXMax

PTX

dMax d

• Measuring PRX
• Recalculation of d

PRX

Distance d ddMax

PTX
PTXMax

PTX_1

PTX_2
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Finding the Distance

• Transmission power PTX is controlled 
via Special Function Register SFRTX

• SFRTX of tranceiver is transmitted with 
every message

• Distance d is calculated out of smallest 
SFRTX

Example (Scatterweb)
• SFRTX tunable in range 0..100 (300m)
• SFRTX(16±4) → d=2m 

SFRTX=11

2m

SFRTX=14 SFRTX=16

Transmitting node (Beacon)

Receiving sensor node
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Relation between Transceiver and SFRTX

Approximated transfer function H(x) of tranceiver (npn transistor)

Message

Transmission Power

YTransmitter

PTX

SFRTX

4
TX

SFRkPTX ⋅=≈

Special Function 
Register to control 
transmitter
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Relation between Distance and SFRTX
PTX = Transmission Power
SFRTX = Transmission Register
PRX = Received Power
d = distance

SFRTX

d

Already 
known:

Transmitter Y

Adjust Transmission Power via Special Function Register SFRTX
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PTX
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Min. Transmission Power

Message Message

• Distance d can be easly calculated 
from transmitted SFRTX

• Smaller estimation error compared to 
RSSI

Theory

d

Min. SFRTXTransmission Power

SFRTX

Y YTransmitter Receiver

d

Min. SFRTX

Reality

PTX 4
TX

SFRkPTX ⋅=≈
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Measurement Results: Scatterweb
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Linearized Measurements
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Linear Regression
f(x)=mx+n
• m=1.3
• n=0

• Create linear equation
• Linearize graph by squaring d
• Determine raising of graph
• Combine final equation

Theory:

dmSFR

dSFR

TX

TX

⋅=

≈
2

≈



15

Measurement Results: Scatterweb
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Example Application
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Example Application with Scatterweb

Localization Algorithm:
Weighted Centroid Localization 
(WCL)

– simple and fast calculation
– small memory footprint
– acceptable positioning error

Jan Blumenthal, Frank Reichenbach, Dirk Timmermann: Precise Positioning with a Low Complexity Algorithm in Ad hoc Wireless Sensor 
Networks, PIK - Praxis der Informationsverarbeitung und Kommunikation, Vol.28 (2005), Journal-Edition No. 2, S.80-85, ISBN: 3-598-01252-
7, Saur Verlag, Deutschland, June 2005

Jan Blumenthal, Frank Reichenbach, Dirk Timmermann: Position Estimation in Ad hoc Wireless Sensor Networks with Low Complexity (Slides), 
Joint 2nd Workshop on Positioning, Navigation and Communication 2005 (WPNC 05) & 1st Ultra-Wideband Expert Talk 2005 (05), S.41-49, 
ISBN: 3-8322-3746-1, Hannover, Deutschland, March 2005

References:

Task:
Determine position of moving sensor 
node

Immobile beacons

Mobile sensor node

Sensor network
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Weighted Centroid Localization (WCL)

Approach:
- Positioning by centroid determination 

Pi´ (CGLCD)
- Improved precision by weighting 

measured distance dix using wij()
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Weight-based on Distances
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distance between beacon and sensor 
node.

Definition of Weight:

How to determine dij?
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Operations on Beacons

Max. transmission 
power sent ?

Increase round number

Send message with own position, transmission 
power and round number

Increase transmission power and wait one time 
slot

no

yes

Adjust transmitter with current transmission 
power

Reset transmission power

• Beacons are sensor nodes with already known position
• Send out messages with own position and currently adjusted SFRTX
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Operations on Sensor Nodes

Higher round number ?

New min. trans-
mission power ?

Store beacons’ position, round number and 
transmission powerReject message

no

yes

no

yes

Waiting for messages

New beacon position received ?
yes

no

Beacon message received ?

yes

no

• Sensor nodes do not know own 
position

• Calculate distance and positions 
out of received messages
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Reduce high Oscillating Measurements

Control Loop

Calculate averaged min. transmission
power e.g.,

PTX aPTX

0.25 0.75TX TX TXaP aP P= ⋅

Higher round number ?

New min. trans-
mission power ?

Store position, round number and 
transmission powerReject message

no

yes

no

yes

Waiting for messages

New beacon position received ?
yes

no

Beacon message received ?

yes

no
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Demonstrator Show
• 4 beacons at all corners, one unknown node was moved
• Localization error: 0.3m
• Notation:

– P12  : current transmission power is 12
– aP10: averaged transmission power is 10

Scatterweb

SpyGlass (University of Luebeck) Field size = 2x2 m

http://rtl.e-technik.uni-rostock.de/~bj/movies/PositionEstimationUsingMinimalTransmissionPower.mpg

http://rtl.e-technik.uni-rostock.de/~bj/movies/PositionEstimationUsingMinimalTransmissionPower.mpg
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Discussion

Remarks
• based on circular transmission range
• concurrent channel access through hidden terminal 

problem
• numerous sources of interferences (sensor nodes,

steel girders, obstacles)
• noticeable delays caused

– increasing transmission power
– round counting

Advantages of min. Transmission Power
• simple distance estimation
• easy to implement
• more accurate than RSSI
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Conclusion

Essentials 
• Wireless sensor networks require localization of 

sensor nodes
• Most distance estimations are inaccurate especially in 

indoor use

New approach to estimate a distance
• Minimal transmission power 

Proof of concept
• Higher resolution and smaller variances than RSSI
• Example application combined with Weighted 

Centroid Localization (WCL)



Thank you!

www.sensornetworks.org

http://www.sensornetworks.org/
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