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ABSTRACT 

Deliberate nonuniform sampling promises increased 
equivalent sampling rates with reduced overall hardware 
costs of the DSP system. The equivalent sampling rate is 
the sampling rate that a uniform sampling device would 
require in order to achieve the same processing 
bandwidth. Equivalent bandwidths of realizable systems 
may well extend into the GHz range while the mean 
sampling rate stays in the MHz range. Current prototype 
systems (IECS) have an equivalent bandwidth of 1.6GHz 
at a mean sampling rate of 80MHz, achieving 40 times the 
bandwidth of a classic DSP system that would operate 
uniformly at 80MHz (cf. [1]). Throughout the literature on 
nonuniform sampling (e. g. [2] and [3]) different sampling 
schemes have been investigated. This paper focuses on 
nonuniform sampling schemes optimized for fast and 
efficient hardware implementations. To our knowledge 
this is the first proposal of an efficient nonuniform 
sampling driver (SD) design in the open literature.  

1. INTRODUCTION 

Nonuniform sampling circumvents traditional sampling 
limitations requiring a sampling rate of at least twice the 
input signal bandwidth. A special unit, the SD, generates 
the sampling pulse train used to digitize the analog signal. 
To realize a SD in digital circuits obviously a synchronous 
design is desirable keeping the design process simple. 
According to sampling theory a straightforward 
implementation of a SD produces sampling instances 
deliberately jittered around a fixed system clock. A 
pseudo random number generator (PRNG) generates 
numbers passed to a digitally controllable delay line 
(DCDL) delaying pulses produced by a central controlling 
unit. Though each digital circuit driving an ADC 
performs, strictly speaking, periodic sampling with jitter 
(due to phase noise) a simple SD realization depicted in 
Fig. 1 does it deliberately. One can consider the time axis 
being separated into time slots having system clock 
duration Tclk. Inside each slot a sampling instance tk is 
produced. For the SD design to be successful it must 

realize a sampling instance with equal probability 
anywhere in the k-th time slot in order to achieve a 
constant probability to produce sampling points anywhere 
at the time axis. Failure to do so will result in an undesired 
spectrum of the sampled signal containing spurious 
frequencies (cf. [4]). Therefore, sampling algorithm, 
architecture and SD hardware implementation have to be 
carefully aligned to obtain maximum benefit from 
nonuniform sampling.  
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Fig. 1: General synchronous SD building block. 

This is due to the convolution of sampling process 
spectrum and signal spectrum. The process is illustrated in 
Fig. 3 showing the spectrum of a signal with one 
component. The figure is added to stress the importance 
of matching the probability density function (PDF) of a 
sampling instance to the SD system clock period.  

Real circuits will not produce sampling points with 
infinite accuracy but will realize time increments of so 
called time quantum size TQ. This renders the sampling 
instance PDF discrete (see Fig. 2). The equivalent 
sampling rate is given by the inverse time quantum. The 
limited amount of time increments in a matched time slot 
is expressed by the system clock period to time quantum 
ratio M  

Q

clk

T
T

M = . (1) 

This is a key parameter of a sampling driver since it 
represents the factor by which the processing bandwidth 
of the digital system is increased. It is convenient to keep 
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Fig. 3: Power density spectra (via DFT) of a signal containing exactly one frequency at 305MHz.
The PDF of a sampling instance is (a) not matched and (b) matched to SD system clock period. 

M at a power of two to fully utilize the bits of the data 
vector entering the DCDL. The process of sampling 
instant generation is well known as periodic sampling 
with jitter (cf. [1]) and can be described by  

MkTkTt kkQkclkk <≤∈+= εεε 0, N , (2) 

where εk is a pseudo random number produced by the 
PRNG at the k-th time slot. Unfortunately equation (2)  
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Fig. 2: PDF of sampling instances at k-th time slot. 

has a bad property. Two successive samples may be 
separated by only the time quantum TQ. It therefore seems 
to be desirable to define a setup of a random experiment 
that will serve to assess the quality of generated sampling 
sequences. Let Ts be the time between consecutive 
samples, the intersample time  

1−−= kks ttT . (3) 

Thus, the intersample time is a derived random variable. 
For convenience we define the Laplacian random 
experiment E0  
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where (in, jn) denotes the event that εk-1 takes on value in 
and εk takes on value jn. It is easy to see that there are M 2 
such events. Assuming that both εk-1 and εk have uniform 
distribution and are statistically independent, it 
immediately follows that the events (in, jn) have equal 
probability 1/M 2. Observing that, given (2) and (3) Ts will 
never become larger than 2M one can define a different 
random experiment E1 with a set Ω1 of 2M elementary 
events  
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where the l-th event in Ω1 denotes the event that Ts takes 
on value lTQ. Unlike the events in Ω0 the events in Ω1 do 
not occur with equal probability. However, these 
probabilities can be obtained from events in E0 by 
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Using (1), (2) and (3) we can say when an event in Ω0 is 
said to be a favorable event in terms of an event in Ω1  

nnln iMjlif −+=∈ )1()0( ωω . (7) 

Applying (6) and (7) the probabilities for all events in Ω1 
and hence the discrete PDF of Ts can be estimated. It is 
sketched in Fig. 4.  
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Fig. 4: PDF of intersample time. 

In an optimal SD design for full ADC utilization the 
system clock period Tclk is usually matched to the 
minimum conversion time of the attached ADC  

}min{ ENCODEclk TT = . (8) 

This is justified by the design decision to operate the 
sampling driver also in a uniform mode (εk constant) in 
which case the ADC should be fully utilized. Hence the 
intersample time constraint  

Qs

clkkk

MTT
Ttt

≥
≥− −1  (9) 

must always be met. Given (6) and (7) we can calculate 
the probability that (9) is not met in case of this 
straightforward design. It is about 47% and we conclude 
that such a straightforward design is not usable as a 
sampling driver.  

2. PHASE SHIFTING 

To avoid too short intersample times we propose a 
different sampling scheme that introduces phase shifts at 
times when consecutive samples occur too close for the 
ADC to handle. The modified sampling scheme can be 
described recursively as described in (10). Only the 
control unit of the design shown in Fig. 1 needs to be 
changed. A phase shift of the sampling pulse means 
deferring it one SD system clock period (i. e. 360°).  
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In the modified design the control unit of the sampling 
driver constantly checks the random numbers that have 
been and are produced by the PRNG and introduces phase 
shifts described by (10). Deliberate phase shifting 

fundamentally changes the sampling scheme. Periodic 
sampling with deliberate jitter becomes additive random 
sampling. A single sampling instance has still an evenly 
distributed PDF but is now stretched over two SD system 
clock periods because of the introduced phase shift. 

A well-known property of the additive random 
sampling scheme is that it produces a constant valued 
sampling point density function (SPDF) after a transient 
phase. This property (based on the central limit theorem) 
is extensively treated in [1]. The PDF of the derived 
random variable Ts looks different than in the previous 
Section 1. Using (3) and (10) one can write  
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We use the same method as in Section 1 to determine the 
probabilities P(Ts /TQ = l) a priori. The result is depicted in 
Fig. 5. The probability to produce intersample times less 
than MTQ is around 11% and thus non-zero. 
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Fig. 5: PDF of intersample time with phase shift. 

The property of such a sampling driver is certainly better 
but would still be too demanding for an attached ADC 
being operated at its limits as described above. A solution 
will be presented in the next Section.  

3. RANDOM NUMBER CORRELATION 

When generating pseudo random numbers maximum 
length linear feedback shift registers (LFSR) are 
commonly used (see [5] and [6]). Using a slice of bits 
from a longer LFSR one can write for consecutive random 
numbers εk-1 and εk  

{ }1,0,2mod)2( 1 ∈∈+= − kk
n

kkk k τετεε N , (12) 

where τk is a binary random number assumed to be evenly 
distributed and n is the dimension of the vector passed as 
random number to the DCDL. It is important to note that, 
given (12), the probabilities for events in Ω0 are no longer 
evenly distributed. Through computer simulation the 
distribution of Ts was determined given that two 
successive random numbers are correlated as defined in 
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Fig. 6: Overall sampling driver architecture (main units). 
(12). The simulation results clearly reveal that the PDF of 
the intersample time now satisfies the constraints (Fig. 7).  
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Fig. 7: PDF of intersample time with phase shift and 
correlated random numbers. 

4. SD INTEGRATION 

Obviously the SD cannot stand alone. It has to be 
integrated into a larger architecture. In Fig. 6 an 
integration of a SD design into a sample recording 
architecture is presented. The extended parallel port (EPP) 
interface is used to program the SD. Functions such as 
starting and stopping as well as uniform and nonuniform 
sampling are realized. Sampled data is buffered in the 
FIFO and read via the EPP. The design was tested and 
implemented in a FPGA using VHDL. 

5. CONCLUSIONS 

In this paper we have derived an efficient sampling 
algorithm for deliberate additive random sampling. The 
algorithm is well suited to fully utilize the minimum 
conversion time of an ADC. Cost reduction is achieved 
because cheaper ADCs can be used instead of expensive 
ones while processing the same or even higher bandwidth 
than the comparable traditional system. Alternatively it is 

possible that a system utilizing the suggested design is 
used to process GHz signals fully digital with higher 
bandwidth and/or resolution than possible today in a 
traditional design using a cutting edge ADC.  

It was shown that introducing deliberate correlation 
into the random number generation process is beneficial. 
It will create exactly the sampling pulse train that best 
utilizes the ADC. In our case the introduced correlation 
coefficient of consecutive random numbers is 0.5. 
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