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Abstract—Previous research has developed a new embedded
system, called iFall, for the detection of unexpected falls for
elderly people. This paper reports a larger set of fall experiments
that have been done in laboratory setups, similar to typical
real-world experiments. These experiments indicate that with
monitoring its own rotation along any axis, iFall is able to detect
a fall in its very beginning. iFall is thus able to protect its user
from severe injuries and its consequences, by initiating some
emergency actions, such as inflating a tiny airbag.

I. INTRODUCTION

For elderly people, unexpected falls can be a major problem,

since they often go along with severe injuries, such as femoral

neck fractures [1], or might even cause the person’s death.

In addition to the direct monetary costs, such unexpected

falls also cause significant problems to a person’s social

environment.

Unexpected falls of elderly people are not rare events but a

major global problem: Currently, 60% of all elderly people of

65 years in age or older are falling at least once a year in their

home environments. Moreover, in nursing homes, the rate is

with 2.4 falls per year per person even higher [1].

Due to the global significance of this problem, previous

research has proposed several systems for the dection and/or

avoidance of unexpected falls and their consequences. For

example, some systems try to detect a fall by camera systems

[2], by activity monitoring, e.g., the IST Vivago system [3],

and portable measurement devices [4]. Other systems, such as

FADE [5], incorporate the sound of the falling (and crashing)

body in order to increase the system’s reliability. Previous

research has also proposed to include barometric information,

in order to detect a fall.

Even though the existing approaches do provide significant

steps towards the assistance of elderly people, they suffer from

one or more of the following problems: (1) they issue false

alarms, (2) they depend on the spatial orientation of the fall

detector, and (3) most severely, they detect a fall only after it

has happend. Because of these deficiencies, existing systems

might issue an alarm, if a person takes a nap, or is not able

to prevent the user from severe injuries.

Recent research [6] has proposed a simple embedded sys-

tem, called iFall, for the investigation of unexpected falls. iFall

consists of a small processor, and some acceleration and air

pressure sensors. This system is described in more detail in

Section II, and provides enough resources for the detection and

analysis of unexpected falls. The iFall system also incorporates

a new algorithmic approach for the detection of a fall. In con-

trast to the measurement of pure acceleration values, the new

algorithm monitors the angle between consecutive readings of

an arbitrarily oriented, three-dimensional acceleration sensor.

The description of this algorithmic approach is the subject of

Section III.

The utility of the iFall system has been tested in a series of

indoor experiments. These experiments are reported in Section

IV. The results indicate that iFall is able to detect a fall in

its very beginning. This early-stage detection allows future

system releases to issue appropriate emergency actions, such

the inflation of an airbag. These options are briefly discussed

in Section V.

II. IFALL

iFall is an embedded system with both its hardware and

software tailored to the detection of unexpected falls. This

section describes the hardware architecture in some detail,

whereas the description of the software is deferred to Section

III.

A. iFall’s Hardware Architecture

iFall is based on its predecessor, known as the StairMaster

[7] (Fig. 1). Its hardware architecture is fairly standard and

sketched in Fig. 2. In its core, it consists of an 8-bit Atmega644

Fig. 1. StairMaster
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Fig. 2. Schematic of the inner communication structure

micro controller [8] with 64 kB internal Flash, 4 kB internal

SRAM, and 2 kB of internal EEPROM. In addition, iFall

employs a 2GB secure digital (SD) memory card to backup

all sensory data and all the computational results.

In addition to the standard communication interfaces, iFall

is also equipped with a class-2 Bluetooth module BlueMod

P25 [9], which allows for a communication range of up to 25

meters. This module constitutes iFall’s interface to the outside

world, e.g., cellular phones, laptops, or any other Bluetoth-

capable device. This Bluetooth module is connected to the

micro controller via the USART interface, which operates at

9600 Baud, and utilizes the Serial Port Profile to emulate a

serial interface to other Bluetooth clients. In this configuration,

all data that are sent by the micro controller are directly

forwarded to the connected Bluetooth client, which can be

a cellular phone, for instance. The purpose of the connected

Bluetooth client is to perform further user-specific data pro-

cessing and/or to issue an emergency action, such as inflating

an airbag or performing an emergency call. The chosen com-

munication approach has the following three advantages: (1)

it increases the overall system flexibility, (2) it allows for the

utilization of further, more powerful processing devices, and

(3) it allows for the integration of further modalities, such as

GPS position data, which might be helpful in finding helpless

persons.

B. iFall’s Sensory System

iFall is equipped with a three-dimensional acceleration

sensor SMB380 [10], which can be operated in a 2 g, 4 g,

and 8 g mode. This sensor is connected to the processor by

the SPI interface, which utilizes a 10-bit wide data bus and

can operate with a maximum data rate of 10 Mbits/s.

In order to increase iFall’s reliability, it also employs an

additional state-of-the-art air pressure sensor BMP085 [11].

This sensor is connected to the processor via the built-in

I2C interface, which operates at about 800 kbits/s. This sensor

yields a resolution of about 0.03 hPa, which corresponds to

a change of about 25 cm in altitude, at an effective range

of 300 hPa to 1100 hPa. This sensor provides 133 measure-

ments per second. Because of its fabrication, i.e., utilizing

the piezoresistive effect and employing the advanced-porous-

silican-membrane technology, the sensor consumes about 3µA

and is as small as 5 mm×5 mm×1.2 mm in size, which might

be very interesting for mobile embedded systems.

C. iFall’s Hardware Properties

iFall’s hardware platform is particularly tailored to the

usage as an embedded system. Thus, all components are low-

power devices, with a required voltage of 3.6 V at a total

current of about 45 mA. For these power requirements, a

simple lithium polymere battery with 3.6 V and a capacity

of 1200 mAh is sufficient to operate iFall for more than 24

hours with Bluetooth activated all the time; with Bluetooth

shut off, the battery allows for an operation of about seven

days in a row. Overall, iFall’s dimensions are as small as

70 mm×26 mm×49 mm at a total weight of 78 gramms. With

these physical properties, iFall can be easily used as a mobile

embedded system for everyday use. With its plastic case, iFall

is very robust and can thus also be used in rough terrains, such

as on ski slopes and mountaineering. A further application area

are roofers, for whom iFall might be used as a full protection

guard.

III. THE FALL-DETECTION SOFTWARE

Most existing systems, for example the fall detector FD-100

[12], the Piper Falldetector [13], and the Vivago Sicherheit-

sarmband [3], as well as current research [14], [15] monitor

the acceleration along the sensor’s three principle axes. In

case, the acceleration value along a specific axis exceeds a

prespecified value, the system would assume that the subject,

i.e., the person who wears the device, has crashed onto the

floor, which would mark the end of an unexpected fall, or

the device would assume the actual falling, i.e., a free fall, if

the acceleration falls below another certain threshold. These

approaches work to some extend, but have to cope with one

or more of the following difficulties:

1) The acceleration sensor, and thus the fall detection

device, has to know its orientation relative to the subject

in order to derive a movement towards the ground.

2) The fall detection device has to define a certain thresh-

old, which might also be exceeded by regular activities,

such as fast walking, hopping, using an elevator, or

driving a car on a rough road, which all might be the

source of false alarms.

3) The total length of the three-dimensional acceleration

sensor provides conclusive information only at the end

of a fall, since a crash onto the floor leads to signifi-

cantly pronounced acceleration values; at the beginning

of a fall, the device’s acceleration changes only very

marginal and slowly (see, also Section IV). Therefore,

all existing devices more or less detect a fall too late,

but can nevertheless automatically issue an emergency

(phone) call after the fall has occurred.

iFall employs two different sensor modalities, i.e., a three-

dimensional acceleration sensor as well as an air pressure

sensor. In order to approach the difficulties discussed above,

it monitors the change in orientation of its acceleration vector,

as is explained in the remainder of this section.

iFall monitors the three acceleration values ax, ay, and az
along the sensor’s three axes individually. It then constantly

calculates the angle

cosϕ =
~At · ~At+1

‖ ~At‖‖ ~At+1‖
(1)
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Fig. 3. The fall indicator signals the fall, even at the beginning of the fall (second part of the picture). The time between the subframes two and four is
sufficient to initiate some emergency actions.

between two consecutive time steps t and t + 1 of the

acceleration vector ~A = (ax, ay, az)
T , with “·” denoting the

inner or scalar product of the two vectors.

This option is motivated by the observation that a fall is

not just “jumping” up or down, but that it is inevitably linked

to a rotation of the entire body. Then, iFall assumes a fall, if

this angle ϕ > θ exceeds a prespecified threshold θ, which

depends on various factors, such as the sampling rate of the

sensor as well as the regular activities of the subject. The

threshold θ should thus be calibrated in cooperation with a

doctor, a physiotherapist, or the like.

By monitoring the angle ϕ, the fall detection is independent

of the actual orientation of the system with respect to the

subject’s body.

A further remark should be made on the usage of an air

pressure sensor: this sensor might lead to a more robust

behavior of the entire system, since a change in altitude

might verify or invalidate other sensory data. However, it

frequently happens that the air pressure is suddenly rising or

falling. Reasons might be a wind gust, opening or closing

a door, walking up or down one floor, or even changing

weather conditions. Thus, such a fall detection device would

benefit from a reference system that is placed, for example,

on the table within the same room. Unfortunately, the utility

of this approach is limited due to practical considerations.

But nevertheless, the air preasure sensor is worth it to be

considered, which will be done in future research.

IV. RESULTS

The iFall system was tested in a series of indoor experiments

of different types. In all these experiments, iFall was mounted

at the hip of a subject. The subject did a series of falls and

always “landed” on a soft mat. The results are summarized in

Figs. 4-11. Every performance figure shows both the angle ϕ

and the normalized length of the acceleration vector | ~A| over

some selected time steps.

Figure 3 shows how the angular velocity ω = ϕt − ϕt−1

changes during the course of a fall. As can be seen, the angular

velocity quickly indicates the fall quite early. It can also be

seen that the angular velocity increases during the fall and

vanishes at its end.

In the first experiment (Fig. 4), the person was standing

in front of the mat and was then falling forward. It can be

seen that at time step 21, the angle ϕ shows a significant

change, which indicates the beginning of a forward rotation,

and thus, the beginning of a fall. At that time, the total length

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50  60

Falling Forward onto a Matt

|A|
ϕ

Fig. 4. Falling forward onto a mat: the fall began at time step 21 and first
contact with the mat happend at time step 28.
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Fig. 5. Falling backwards onto a mat: the fall began at time step 32 and
first contact with the mat happend at time step 36.

of the acceleration vector | ~At| shows only a very slight change,

which is as small as the present noise, since the falling has

just begun. The length of the acceleration vector | ~At| changes

as late as time step 28 at which the person made his/her first

contact with the mat. This example clearly shows that the angle

ϕ indicates the fall very early in time, which would provide

enough time to issue some emergency actions.

The second experiment (Fig. 5) used the same setup as

the first one, except that the person was falling backwards.

Conceptually, the data is very similar, except that the rotation

is much stronger. This might be due to the fact that when

falling backwards, a subject has less control, which is much

more uncomfortable.

In the third experiment (Fig. 6), the person was walking

straight ahead and then stumbling at the mat causing a forward

fall. The walking behavior is indicated by the periodic changes
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Fig. 6. Walking and stumbling at the mat: The walk lasted for about the
first 100 time steps. The fall began at time step 97 and first contact with the
mat happend at time step 112.
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Fig. 7. Falling sidewise onto a mat: the fall began at time step 66 and first
contact with the mat happend at time step 78.

of the length of the acceleration vector | ~At|.

At time step 90, the graph indicates a very slow decreasing

trend, which however is impossible to be timely detected by

a fall detection device, since the changes are way below the

periodic changes of the regular walking behavior. However, the

change of the angle ϕ clearly signals the beginning of a fall

at time step 97; the length of the acceleration vector signaled

this fall as late as time step 112 when the person made contact

with the mat, which would be way too late for any protection

actions.

In the fourth experiment (Fig. 7), the subject fell onto a mat,

which was located at the right-hand-side of his body. It can be

clearly seen that as compared to the acceleration vector | ~At|,
the angular change ϕ signals the beginning of the fall already

9 time steps earlier, which corresponds to 281 ms.

The fifth experiment (Fig. 8) shows an extraordinary fall: a
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Fig. 8. Martial Arts throw (Morote-Seoi-Nage): The throw began at time
step 95 and ended with a roll of the subject at time step 130.
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Fig. 9. The first 150 steps indicate the person’s walk to the restroom during
which the angular velocity is rather small. At time step 305 the person falls,
as is clearly indicated.

martial arts was throwing (Morote Seoinage) the subject over

his shoulder. The resulting extreme rotation ϕ can be identified

at time step 100. The subject’s landing on the mat was at time

step 120, as can be seen from the acceleration vector | ~At|.
After the strong impact, the subject was rolling on the mat,

which explains the second change of the angle ϕ around time

step 130.

Fig. 9 shows the acceleration vector | ~At| and the angle ϕ

during a walk to the restroom. At the beginning of this figure,

the person walked normaly, so that the change of the angular

velocity is small. Between time step 150 and 250, the person

stopped. After time step 250 the person hits a door frame, so

that the acceleration vector changes stronger. At the end (time

step 305), the extreme rotation of the angel ϕ signals that the

person begins to fall.
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Fig. 10. A fall over an obstacle is similar to the falls described above: the
angular velocity is a clear indication of a fall, which beginns to happen at
time step 269 and ends at time step 278.
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Fig. 11. This figure clearly indicates that the monitoring of the angle between
two acceleration vectors is also suitable to detect a person getting unconscious.

In the seventh experiment (Fig. 10), the person fell over

an obstacle. In the first 250 time steps, the person did nearly

nothing. At time step 175 the very slight change of the angle

ϕ and the small peak of the acceleration vector | ~At| signals a

jump of the person. Furthermore, this figure shows that a fall

over an obstacle is similar to the falls described above. The

change of the angle ϕ clearly indicates the fall, which started

at time step 269 and ends at time step 278.

A frequently discussed problem is a situation in which a

person gets unconscious, since the acceleration values change

quite late; in the beginning, the changes are rather small and

increase only towards the end of the fall, which happens

around time step 88 in Fig. 11. However, as was already seen

in all the experiments discussed above, the angle ϕ between

two consecutive measurements significantly increases already

in the beginning of this process, as can be seen around time

step 78 in Fig. 11.

In summary, all experiments have shown that the monitoring

of the orientation of the acceleration vector | ~At| over time is

a reliable indicator for the beginning of an unexpected fall.

V. DISCUSSION

This paper has presented a new embedded system, called

iFall. It has been shown that a rather standard embedded

system hardware in combination with a new algorithm is

able to detect an unexpected fall both timely and reliably. If

assuming a free fall without any action of the subject, the time

between the signal and the end of a fall is roughly 400 ms.

Since this time span is roughly ten times longer than a car

airbag has, it is more than sufficient to inflate some body

protectors with low impact.

The proposed fall detection device has been developed as

an embedded system with low energy demands, as light as

possible, and with very small dimensions, such that it can be

worn unintrusively by almost anyone. Because of the very low
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Fig. 12. The composed air pressure sensor consists of six elementary sensors,
which are mounted perpendicular to each other.

resource demands, future iFall releases might be integrated

into, for example, high-performance cellular phones.

In all experiments so far, the rotation of the subject was

sufficient to detect an unexpected fall; the air pressure sensor

has just supported this indication a posteriori by signaling a

significant change in altitude. Future research will be dedicated

to a better integration of the air pressure sensors. The goal

will be to upgrade these sensors from a secondary information

source to a primary one. One option towards this goal is the

realization of a complex air pressure sensor as shown in Fig.

12.

It consists of six (at least four) air pressure sensors that point

towards the three principal axes x, −x, y, −y, z, and −z. Such

a sensor has the following properties: any change of the current

air pressure would apply to all sensors simultaneously. Since

all sensor readings would change in synchrony, iFall could

derive that no movement has occurred. In case of a movement,

however, the sensor readings change differently. Lets assume

a movement in the x-direction. Then this sensor would read a

higher pressure than the sensor in the reverse direction. Also,

the other sensors would provide slightly decreased readings,

since the air is flowing along the sensors, which reduces

their pressure readings. The validation of this concept, how-

ever, is subject of future research.
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