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ABSTRACT
In the paper at hand, a model-based design and energy esti-

mation approach for wireless sensor nodes in human activity

recognition systems is extended. Entire wireless body area

sensor networks are modeled and analyzed w.r.t. their real

time capabilities of different software mappings on a system

level.

CCS CONCEPTS
• Networks → Network performance analysis; • Com-

puter systems organization→ Real-time system architec-
ture.
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1 INTRODUCTION AND RELATEDWORK
Current generations of sensors on the market already in-

tegrate computing capabilities to perform sensor data pro-

cessing on-chip, allowing for sophisticated edge computing

systems [2]. This enables the development of smart sensors

for ubiquitous mobile sensing systems, resulting in hetero-

geneous multi-processing architectures spanning over, e.g.,
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Wireless Sensor Networks (WSN). The complexity of such

architectures results in an increased number of design deci-

sions that have to be made during development of mobile

ubiquitous systems. Design decisions include mapping the

software onto available processing units of the WSN, in-

fluencing different design goals like real time performance,

latency or energy consumption.

The most similar work to the paper at hand is [4], introduc-

ing a model-based design and energy estimation approach

of wireless sensors for activity recognition scenarios. While

in [4] the modeling approach is shown for a single wireless

sensor node, the paper at hand extends it by modeling an

entire WSN. Furthermore, an extension for a model-based

real time analysis of the WSN is introduced.

2 CASE STUDY
As a case study, we used the kitchen assessment scenario in-

troduced in [5]. Here, accelerometer and gyroscope from five

sensors attached to a human body where sampled at a rate of

120 Hz. A fixed size sliding window of 128 samples is used to

segment the data with an overlap of 75 %. From each window,

four statistical features were calculated, i.e., mean, variance,
skewness, and kurtosis, as well as two frequency domain fea-

tures computed by a Fast Fourier Transform (FFT ), i.e., the
dominant frequency and its magnitude (in [5] referred to as

peak and energy, respectively).
The aforementioned offline scenario was selected as a case

study for our work, designing it towards an online system.

We chose custom energy-efficient sensor nodes to deploy a

WSN. They are equipped with a BHI160 ultra-low-power sen-

sor hub [2] composed of an accelerometer, a gyroscope, and a

32-bit floating point optimized microcontroller referred to as

FuserCore. Furthermore, the sensor nodes are equipped with

a DA14583 microcontroller with an integrated Bluetooth

Low Energy (BTLE) stack and radio for data transmission.

As the BHI160 does not allow a sampling rate of 120 Hz, we

chose the nearest possible sampling frequency, i.e., 100 Hz.

In order to analyze the real time capabilities of the WSN in

our setup, we use a model-based representation on which

the real time analysis is done.

https://doi.org/10.1145/3341162.3343845
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3 BACKGROUND
The basis of the modeling approach are Cyclo-Static Data
Flow (CSDF ) graphs [1], an extension of Synchronous Dataflow
(SDF ) graphs as described by [6].

Definition 1. A CSDF graph G = (V , E, cons,prod,D)
consists of a set of vertices V called actors, a set of edges

E ⊆ V ×V called channels, token consumption rate vectors

cons : E → Nn , token production rate vectors prod : E →

Nn , and an initial token distribution D : E → N.

In CSDF, each actor fires in cyclic repetitive sequences of

length n, called cycles. The function n : V → N assigns a

number of firings per cycle to each actor. The presence and

number of data packets is represented by tokens. With each

channel e , a number of initial tokens D(e) is associated. The
execution of a consistent CSDF graph forms fixed repetitive

firing sequences called iterations, which can be described by

a repetition vector γ .

Definition 2. The repetition vector γ of a CSDF graph

G assigns a number of firings per iteration to each actor γ :
V → N. It is defined as the unique smallest non-trivial vector

that satisfies the following balance equation:

γ (ṽ)−1∑
i=0

prod(e)[i mod n(ṽ)] =

γ (v)−1∑
j=0

cons(e)[j mod n(v)]

for each channel e = (ṽ,v) ∈ E from actor ṽ ∈ V to v ∈ V .
In this sense, non-trivial means that γ (v) > 0 for all v ∈ V .

Furthermore, we are using timed CSDF graphs [8], where

an n-dimensional execution time vector δ , also referred to

as delay is associated with each actor, i.e., δ : V → Nn . This
allows to calculate the throughput as a further important

property of a CSDF graph. According to [8] it is defined as

follows.

Definition 3. The throughput TH (G) of a CSDF graphG
is defined as the average number of iterations of a time period

divided by the duration of that period, i.e., the reciprocal of

the average time duration of an iteration of the graph G.

4 DATAFLOW-BASED REAL TIME ANALYSIS
In this section, we shortly present the modeling of WSNs in

Human Activity Recognition (HAR) scenarios. The founda-

tion for a single sensor can be found in [4].

We modeled the selected case study according to the Ac-

tivity Recognition Chain from [3]. The data acquisition is

modeled by actors DAx and pre-processing (built-in sen-

sor firmware) by actors PPx. The segmentation and feature

extraction are summarized in actors FEx, calculating the

window-based features. We summarized the Modeling &

Inference stage and the classification into a placeholder ac-

tor CL as it is not part of the analysis. The corresponding
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Figure 1: CSDF graph inMapping A (top) and B (bottom)

CSDF graph is shown in Figure 1. Due to space limitations,

only 3 out of 5 sensors are shown. Initial tokens are marked

by bullets. The corresponding parameters of the CSDF graph

are calculated from the configuration of the activity recogni-

tion system, i.e., sampling rate, window size, feature vectors,

etc., and are shown in Table 1. Note that ’. . . ’ indicates re-
currence of previous vector entries throughout the paper.

A hardware model H = (P,T , S) is a set of processing

cores P , a set of sensors S , and a set of directly connected

communication channels T ⊆ S × P ∪ P × P .
In our experiments, each wireless sensor node consists

of a sensor named SE, the FuserCore named FU, a wired
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Table 1: Graph parameters of all configurations

Graph Parameters Parameter Values

δDAx 10 000µs
δPPx 1 250µs
δF Ex ∈ N32 [376µs, 344µs, · · · , 23 469µs]
δCL ∈ N32 [0µs, · · · , 1 000µs]
ODAx , IPPx ,OPPx , IF Ex 2

OF Ex , IxCL ∈ N32 [0, · · · , 12]

OCL ∈ N32 [0, · · · , 32]
D(cFB−CL) 32

communication link, i.e., I
2
C between them (t0), the smart-

phone’s application processor named AP, and the BTLE link

t1 between them.

A mapping M consists of a set of mapping relationsM ⊆

V ×(S∪P), restricting each actorv to be mapped exactly once,

i.e., ∀v ∈ V : !∃mV = (v,p) ∈ M . After mapping, scheduling

edges need to be added to the graph, in order to serialize the

executions of all actors mapped to the same processor in a

non-overlapping way.

Different mappings of the application graph to the hard-

ware are possible. In Figure 1, two different mappings of the

CSDF graph including the corresponding scheduling edges

are shown. In Mapping A, the raw data from all sensors is sent

to the smartphone, where segmentation, feature extraction,

and classification are performed. In Mapping B, segmentation

and feature extraction are performed on each sensor’s Fuser-
Core. Only the feature vectors are sent to the smartphone

where classification is performed.

In order to decide which mapping is beneficial in terms

of real time performance for the BTLE transceiver of the

smartphone (i.e., whether the data rate meets the BTLE trans-

mission constraints of the smartphone), the effort function

e ftrans (t̃) capturing the transmission amount on a set of

hardware links t̃ calculates its resulting data rate. The data
rate can be calculated by summing up all consumption rates

on the edges mapped to the links t̃ within one graph itera-

tion, and dividing it by the average duration of one graph

iteration or multiplying it by its throughput, respectively. In

Algorithm 1 the pseudo code for this calculation is shown.

A set of hardware channels t̃ is given to the algorithm,

which, in our case, are the links between the sensors and

AP (t11-t15) representing the BTLE connections. Furthermore

the graph G, the hardware model H , the mapping M , the

repetition vector γ (G), and the graphs throughput TH (G)
are provided as parameter. For each hardware channel (line

3), the graph edges Ẽ mapped to it are returned by function

дetMappedChannels(). For each edge, the destination actor’s

repetition vector entry is saved in a variable r (lines 6 and

Algorithm 1 Calculating effort function e ftrans (t̃).

1: procedure calc_effort(t̃ ,G,H ,M ,γ (G), TH (G))
2: sum = 0

3: for all t in t̃ do
4: Ẽ = дetMappedChannels(t,G,H ,M)

5: for all ẽi in Ẽ do

6: ṽi = дetDestActor (ẽi ,G)
7: r = γ (ṽi )
8: for all j in [0, 1, ..., r − 1] do

9: sum += cons(ẽi )[j mod n(ṽi )]
10: return sum ∗TH (G)

7). Iterating over all firings of that actor, the consumption

rates of its incoming channel are summed up (line 8 and

9). Repeating that for all hardware channels t̃ results in the

accumulated token consumptions (variable sum) of all actors

mapped to AP within one graph iteration, representing the

received BTLE packets on AP. Finally, in line 10 the data rate

is calculated and returned.

5 EXPERIMENTAL EVALUATION
In our experimental setup, we used a Samsung Galaxy S5

smartphone as the data aggregating device of the WSN. The

5 sensors connected via BTLE were placed in a distance of

≈ 85 cm from the smartphone. In order to empirically deter-

mine the maximum data rate of the smartphones BTLE chip,

we tried different number of sensors, sampling frequencies

and BTLE connection intervals. In all experiments, each sen-

sor sample (3D raw accelerometer, 3D raw gyroscope, or 3D

feature vector entry) is packed in a 14 byte data structure.

The maximum data rate of ≈ 398.2 samples/s without sam-

ple loss could be achieved with 4 sensors, each sampling at

100Hz and a BTLE connection interval of 30. The results

were acquired by counting all received samples from each

sensor within a specified time of at least 90 s. Regarding this

empirically determined maximum data rate, we analyzed our

model in both mappings with five wireless sensor nodes. In

Mapping A, the wireless sensor nodes send raw accelerome-

ter and gyroscope data each sampled at 100Hz to the smart-

phone. In Mapping B, the window-based feature extraction

is performed on the BHI160’s FuserCore. The calculated fea-

ture vectors from each sensor are transmitted via BTLE to

the smartphone. For the delay annotations of each actor, we

measured the worst-case execution times performed on the

FuserCore. Note, when mapping actors to the smartphone

AP, we used the same execution times as on the FuserCore.

This can be seen as an overestimation since we expect the

smartphone AP to execute the feature extraction code faster

than the FuserCore. However, we consider this overestima-

tion as adequate, since the chosen execution delay on the
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Table 2: Estimated and measured wireless transmissions of

MappingB in samples/s

Wireless Link in H Estimated Measured Error

t11 37.5 37.63 0.35%

t12 37.5 37.72 0.59%

t13 37.5 37.26 0.64%

t14 37.5 37.51 0.03%

t15 37.5 37.14 0.96%

t11 − t15 187.5 187.27 0.12%

AP does not affect the real time performance of the WSN

in our model. For the same reason we used a placeholder

execution time of 1 000 µs for the classification, modeled by

actor CL. We used the SDF
3
tools [7] to analyze the through-

put and repetition vector of the resulting graphs from both

mappings in Figure 1, but including all five sensors. For both

mappings, the same repetition vector γ (G) ∈ N16 = [32, . . . ]
and the throughputTH (G) = 3.125e−06

1

s was acquired. The

transmission efforts of the smartphone’s BTLE transceiver

calculated by Algorithm 1 for both mappings are 1 000 To-

kens/s and 187.5 Tokens/s for Mapping A and Mapping B, re-
spectively. Note that a token in our model corresponds to

one 14 Byte sensor sample/feature value. We can see that

Mapping A does not meet the real time requirements of the

configuration due to the limited date rate of the smartphone’s

BTLE transceiver (≈ 398.2 samples/s) and is thus not possible

to deploy. In Mapping B, the data rate on t11 − t15 is signifi-
cantly reduced to 187.5 samples/s and meets the data rate

constraint of the smartphone’s BTLE transceiver. Addition-

ally, the real-time capability of the processing cores can be

validated by checking if the sensors constrain the graph’s

iteration period:
1

TH (G)

?

=
∑γ (DAx )−1

i=0 δDAx [i mod n(DAx)].

In order to evaluate the model accuracy, we measured the

resulting data rates on the smartphones BTLE transceiver af-

ter implementing Mapping B on the sensors. For this setup, a

BTLE connection interval of 30 has been used. The acquired

results along with the model-based estimations and errors

are shown in Table 2. We can see, that the estimated results

from our model differ a maximum of 0.96 % from the mea-

sured results in our experiments. The sensors internal clocks

typically vary by±1% [2]. As a result, themeasurements from

our implementation slightly differ from the model-based esti-

mations. However, the deviations are small enough to allow

substantiated design decisions at early design stages.

The results acquired from our model might appear straight

forward for our selected case study. However, for the sake of

comprehensibility only a subset of mappings and a simple

case of an HAR setup was analyzed in our experiments. The

introduced approach shows its real potential in scenarios,

where the feature extraction is not symmetrical on all sensors,

e.g., additional features are calculated on the two sensors at

the feet of the person for additional step detection. Another

possible scenario is a feature selection approach, to find

out the most important features of each body position. This

can lead to very different feature sets for each sensor/body

part. In such cases, different mappings for sensors are more

reasonable and the analysis and conclusion which mapping

is the most beneficial becomes difficult for a developer to

estimate manually. Furthermore, modeling an entire sensor

network is necessary, as a mapping decision for one sensor

affects the resulting data rate at the receiver. This in turn

influences mapping options of the remaining sensors.

6 CONCLUSION
In the paper at hand, amodel-based real time analysis method

for different mappings of activity recognition stages onto a

wireless body area sensor network is presented and evalu-

ated for a selected case study. In our experiments, our model-

based approach achieved a system-level accuracy above 99 %.

The generality of the method allows to analyze alternative

mappings and can be applied to more complex system de-

signs. Considering the growing system complexities, formal

estimation methods are crucial for automated design space

exploration, in order to deal with the increasing design space

of today’s and future human activity recognition systems.
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